Metamath Proof Explorer


Theorem prmo3

Description: The primorial of 3. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo3 # p 3 = 6

Proof

Step Hyp Ref Expression
1 3nn 3
2 prmonn2 3 # p 3 = if 3 # p 3 1 3 # p 3 1
3 1 2 ax-mp # p 3 = if 3 # p 3 1 3 # p 3 1
4 3prm 3
5 4 iftruei if 3 # p 3 1 3 # p 3 1 = # p 3 1 3
6 3m1e2 3 1 = 2
7 6 fveq2i # p 3 1 = # p 2
8 prmo2 # p 2 = 2
9 7 8 eqtri # p 3 1 = 2
10 9 oveq1i # p 3 1 3 = 2 3
11 3cn 3
12 2cn 2
13 3t2e6 3 2 = 6
14 11 12 13 mulcomli 2 3 = 6
15 10 14 eqtri # p 3 1 3 = 6
16 5 15 eqtri if 3 # p 3 1 3 # p 3 1 = 6
17 3 16 eqtri # p 3 = 6