Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Primorial function
prmocl
Next ⟩
prmone0
Metamath Proof Explorer
Ascii
Unicode
Theorem
prmocl
Description:
Closure of the primorial function.
(Contributed by
AV
, 28-Aug-2020)
Ref
Expression
Assertion
prmocl
⊢
N
∈
ℕ
0
→
#
p
⁡
N
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
prmoval
⊢
N
∈
ℕ
0
→
#
p
⁡
N
=
∏
k
=
1
N
if
k
∈
ℙ
k
1
2
fzfid
⊢
N
∈
ℕ
0
→
1
…
N
∈
Fin
3
elfznn
⊢
k
∈
1
…
N
→
k
∈
ℕ
4
3
adantl
⊢
N
∈
ℕ
0
∧
k
∈
1
…
N
→
k
∈
ℕ
5
1nn
⊢
1
∈
ℕ
6
5
a1i
⊢
N
∈
ℕ
0
∧
k
∈
1
…
N
→
1
∈
ℕ
7
4
6
ifcld
⊢
N
∈
ℕ
0
∧
k
∈
1
…
N
→
if
k
∈
ℙ
k
1
∈
ℕ
8
2
7
fprodnncl
⊢
N
∈
ℕ
0
→
∏
k
=
1
N
if
k
∈
ℙ
k
1
∈
ℕ
9
1
8
eqeltrd
⊢
N
∈
ℕ
0
→
#
p
⁡
N
∈
ℕ