Step |
Hyp |
Ref |
Expression |
1 |
|
prmoval |
|
2 |
|
eqidd |
|
3 |
|
simpr |
|
4 |
3
|
eleq1d |
|
5 |
4 3
|
ifbieq1d |
|
6 |
|
elfznn |
|
7 |
|
1nn |
|
8 |
7
|
a1i |
|
9 |
6 8
|
ifcld |
|
10 |
2 5 6 9
|
fvmptd |
|
11 |
10
|
eqcomd |
|
12 |
11
|
prodeq2i |
|
13 |
1 12
|
eqtrdi |
|
14 |
|
fzfid |
|
15 |
|
fz1ssnn |
|
16 |
14 15
|
jctil |
|
17 |
|
fzssz |
|
18 |
17
|
a1i |
|
19 |
|
0nelfz1 |
|
20 |
19
|
a1i |
|
21 |
|
lcmfn0cl |
|
22 |
18 14 20 21
|
syl3anc |
|
23 |
|
id |
|
24 |
7
|
a1i |
|
25 |
23 24
|
ifcld |
|
26 |
25
|
adantl |
|
27 |
26
|
fmpttd |
|
28 |
|
simpr |
|
29 |
28
|
adantr |
|
30 |
|
eldifi |
|
31 |
30
|
adantl |
|
32 |
|
eldif |
|
33 |
|
velsn |
|
34 |
33
|
biimpri |
|
35 |
34
|
equcoms |
|
36 |
35
|
necon3bi |
|
37 |
32 36
|
simplbiim |
|
38 |
37
|
adantl |
|
39 |
|
eqid |
|
40 |
39
|
fvprmselgcd1 |
|
41 |
29 31 38 40
|
syl3anc |
|
42 |
41
|
ralrimiva |
|
43 |
42
|
ralrimiva |
|
44 |
|
eqidd |
|
45 |
|
simpr |
|
46 |
45
|
eleq1d |
|
47 |
46 45
|
ifbieq1d |
|
48 |
15 28
|
sselid |
|
49 |
17 28
|
sselid |
|
50 |
|
1zzd |
|
51 |
49 50
|
ifcld |
|
52 |
44 47 48 51
|
fvmptd |
|
53 |
|
breq1 |
|
54 |
16
|
adantr |
|
55 |
17
|
2a1i |
|
56 |
55
|
imdistanri |
|
57 |
|
dvdslcmf |
|
58 |
54 56 57
|
3syl |
|
59 |
|
elfzuz2 |
|
60 |
59
|
adantl |
|
61 |
|
eluzfz1 |
|
62 |
60 61
|
syl |
|
63 |
28 62
|
ifcld |
|
64 |
53 58 63
|
rspcdva |
|
65 |
52 64
|
eqbrtrd |
|
66 |
65
|
ralrimiva |
|
67 |
|
coprmproddvds |
|
68 |
16 22 27 43 66 67
|
syl122anc |
|
69 |
13 68
|
eqbrtrd |
|