Metamath Proof Explorer


Theorem prmolelcmf

Description: The primorial of a positive integer is less than or equal to the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020) (Revised by AV, 29-Aug-2020)

Ref Expression
Assertion prmolelcmf N 0 # p N lcm _ 1 N

Proof

Step Hyp Ref Expression
1 prmocl N 0 # p N
2 1 nnzd N 0 # p N
3 fzssz 1 N
4 fzfid N 0 1 N Fin
5 0nelfz1 0 1 N
6 5 a1i N 0 0 1 N
7 lcmfn0cl 1 N 1 N Fin 0 1 N lcm _ 1 N
8 3 4 6 7 mp3an2i N 0 lcm _ 1 N
9 2 8 jca N 0 # p N lcm _ 1 N
10 prmodvdslcmf N 0 # p N lcm _ 1 N
11 dvdsle # p N lcm _ 1 N # p N lcm _ 1 N # p N lcm _ 1 N
12 9 10 11 sylc N 0 # p N lcm _ 1 N