Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Primorial function
prmonn2
Next ⟩
prmo2
Metamath Proof Explorer
Ascii
Unicode
Theorem
prmonn2
Description:
Value of the primorial function expressed recursively.
(Contributed by
AV
, 28-Aug-2020)
Ref
Expression
Assertion
prmonn2
⊢
N
∈
ℕ
→
#
p
⁡
N
=
if
N
∈
ℙ
#
p
⁡
N
−
1
⋅
N
#
p
⁡
N
−
1
Proof
Step
Hyp
Ref
Expression
1
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
2
npcan1
⊢
N
∈
ℂ
→
N
-
1
+
1
=
N
3
1
2
syl
⊢
N
∈
ℕ
→
N
-
1
+
1
=
N
4
3
eqcomd
⊢
N
∈
ℕ
→
N
=
N
-
1
+
1
5
4
fveq2d
⊢
N
∈
ℕ
→
#
p
⁡
N
=
#
p
⁡
N
-
1
+
1
6
nnm1nn0
⊢
N
∈
ℕ
→
N
−
1
∈
ℕ
0
7
prmop1
⊢
N
−
1
∈
ℕ
0
→
#
p
⁡
N
-
1
+
1
=
if
N
-
1
+
1
∈
ℙ
#
p
⁡
N
−
1
⁢
N
-
1
+
1
#
p
⁡
N
−
1
8
6
7
syl
⊢
N
∈
ℕ
→
#
p
⁡
N
-
1
+
1
=
if
N
-
1
+
1
∈
ℙ
#
p
⁡
N
−
1
⁢
N
-
1
+
1
#
p
⁡
N
−
1
9
3
eleq1d
⊢
N
∈
ℕ
→
N
-
1
+
1
∈
ℙ
↔
N
∈
ℙ
10
3
oveq2d
⊢
N
∈
ℕ
→
#
p
⁡
N
−
1
⁢
N
-
1
+
1
=
#
p
⁡
N
−
1
⋅
N
11
9
10
ifbieq1d
⊢
N
∈
ℕ
→
if
N
-
1
+
1
∈
ℙ
#
p
⁡
N
−
1
⁢
N
-
1
+
1
#
p
⁡
N
−
1
=
if
N
∈
ℙ
#
p
⁡
N
−
1
⋅
N
#
p
⁡
N
−
1
12
5
8
11
3eqtrd
⊢
N
∈
ℕ
→
#
p
⁡
N
=
if
N
∈
ℙ
#
p
⁡
N
−
1
⋅
N
#
p
⁡
N
−
1