Metamath Proof Explorer


Theorem prmrec

Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in ApostolNT p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series , attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypothesis prmrec.f F = n k 1 n 1 k
Assertion prmrec ¬ F dom

Proof

Step Hyp Ref Expression
1 prmrec.f F = n k 1 n 1 k
2 inss2 1 n 1 n
3 elinel2 k 1 n k 1 n
4 elfznn k 1 n k
5 nnrecre k 1 k
6 5 recnd k 1 k
7 3 4 6 3syl k 1 n 1 k
8 7 rgen k 1 n 1 k
9 2 8 pm3.2i 1 n 1 n k 1 n 1 k
10 fzfi 1 n Fin
11 10 olci 1 n 1 1 n Fin
12 sumss2 1 n 1 n k 1 n 1 k 1 n 1 1 n Fin k 1 n 1 k = k = 1 n if k 1 n 1 k 0
13 9 11 12 mp2an k 1 n 1 k = k = 1 n if k 1 n 1 k 0
14 elin k 1 n k k 1 n
15 14 rbaib k 1 n k 1 n k
16 15 ifbid k 1 n if k 1 n 1 k 0 = if k 1 k 0
17 16 sumeq2i k = 1 n if k 1 n 1 k 0 = k = 1 n if k 1 k 0
18 13 17 eqtri k 1 n 1 k = k = 1 n if k 1 k 0
19 4 adantl n k 1 n k
20 prmnn k k
21 20 6 syl k 1 k
22 21 adantl k 1 k
23 0cnd ¬ k 0
24 22 23 ifclda if k 1 k 0
25 24 mptru if k 1 k 0
26 eleq1w m = k m k
27 oveq2 m = k 1 m = 1 k
28 26 27 ifbieq1d m = k if m 1 m 0 = if k 1 k 0
29 28 cbvmptv m if m 1 m 0 = k if k 1 k 0
30 29 fvmpt2 k if k 1 k 0 m if m 1 m 0 k = if k 1 k 0
31 19 25 30 sylancl n k 1 n m if m 1 m 0 k = if k 1 k 0
32 id n n
33 nnuz = 1
34 32 33 eleqtrdi n n 1
35 25 a1i n k 1 n if k 1 k 0
36 31 34 35 fsumser n k = 1 n if k 1 k 0 = seq 1 + m if m 1 m 0 n
37 18 36 eqtrid n k 1 n 1 k = seq 1 + m if m 1 m 0 n
38 37 mpteq2ia n k 1 n 1 k = n seq 1 + m if m 1 m 0 n
39 1z 1
40 seqfn 1 seq 1 + m if m 1 m 0 Fn 1
41 39 40 ax-mp seq 1 + m if m 1 m 0 Fn 1
42 33 fneq2i seq 1 + m if m 1 m 0 Fn seq 1 + m if m 1 m 0 Fn 1
43 41 42 mpbir seq 1 + m if m 1 m 0 Fn
44 dffn5 seq 1 + m if m 1 m 0 Fn seq 1 + m if m 1 m 0 = n seq 1 + m if m 1 m 0 n
45 43 44 mpbi seq 1 + m if m 1 m 0 = n seq 1 + m if m 1 m 0 n
46 38 1 45 3eqtr4i F = seq 1 + m if m 1 m 0
47 29 prmreclem6 ¬ seq 1 + m if m 1 m 0 dom
48 46 47 eqneltri ¬ F dom