Metamath Proof Explorer


Theorem prmreclem1

Description: Lemma for prmrec . Properties of the "square part" function, which extracts the m of the decomposition N = r m ^ 2 , with m maximal and r squarefree. (Contributed by Mario Carneiro, 5-Aug-2014)

Ref Expression
Hypothesis prmreclem1.1 Q = n sup r | r 2 n <
Assertion prmreclem1 N Q N Q N 2 N K 2 ¬ K 2 N Q N 2

Proof

Step Hyp Ref Expression
1 prmreclem1.1 Q = n sup r | r 2 n <
2 ssrab2 r | r 2 N
3 breq2 n = N r 2 n r 2 N
4 3 rabbidv n = N r | r 2 n = r | r 2 N
5 4 supeq1d n = N sup r | r 2 n < = sup r | r 2 N <
6 ltso < Or
7 6 supex sup r | r 2 N < V
8 5 1 7 fvmpt N Q N = sup r | r 2 N <
9 nnssz
10 2 9 sstri r | r 2 N
11 oveq1 r = 1 r 2 = 1 2
12 sq1 1 2 = 1
13 11 12 eqtrdi r = 1 r 2 = 1
14 13 breq1d r = 1 r 2 N 1 N
15 1nn 1
16 15 a1i N 1
17 nnz N N
18 1dvds N 1 N
19 17 18 syl N 1 N
20 14 16 19 elrabd N 1 r | r 2 N
21 20 ne0d N r | r 2 N
22 nnz z z
23 zsqcl z z 2
24 22 23 syl z z 2
25 id N N
26 dvdsle z 2 N z 2 N z 2 N
27 24 25 26 syl2anr N z z 2 N z 2 N
28 nnlesq z z z 2
29 28 adantl N z z z 2
30 nnre z z
31 30 adantl N z z
32 31 resqcld N z z 2
33 nnre N N
34 33 adantr N z N
35 letr z z 2 N z z 2 z 2 N z N
36 31 32 34 35 syl3anc N z z z 2 z 2 N z N
37 29 36 mpand N z z 2 N z N
38 27 37 syld N z z 2 N z N
39 38 ralrimiva N z z 2 N z N
40 oveq1 r = z r 2 = z 2
41 40 breq1d r = z r 2 N z 2 N
42 41 ralrab z r | r 2 N z N z z 2 N z N
43 39 42 sylibr N z r | r 2 N z N
44 brralrspcev N z r | r 2 N z N x z r | r 2 N z x
45 17 43 44 syl2anc N x z r | r 2 N z x
46 suprzcl2 r | r 2 N r | r 2 N x z r | r 2 N z x sup r | r 2 N < r | r 2 N
47 10 21 45 46 mp3an2i N sup r | r 2 N < r | r 2 N
48 8 47 eqeltrd N Q N r | r 2 N
49 2 48 sselid N Q N
50 oveq1 z = Q N z 2 = Q N 2
51 50 breq1d z = Q N z 2 N Q N 2 N
52 41 cbvrabv r | r 2 N = z | z 2 N
53 51 52 elrab2 Q N r | r 2 N Q N Q N 2 N
54 48 53 sylib N Q N Q N 2 N
55 54 simprd N Q N 2 N
56 49 adantr N K 2 Q N
57 56 nncnd N K 2 Q N
58 57 mulid1d N K 2 Q N 1 = Q N
59 eluz2gt1 K 2 1 < K
60 59 adantl N K 2 1 < K
61 1red N K 2 1
62 eluz2nn K 2 K
63 62 adantl N K 2 K
64 63 nnred N K 2 K
65 56 nnred N K 2 Q N
66 56 nngt0d N K 2 0 < Q N
67 ltmul2 1 K Q N 0 < Q N 1 < K Q N 1 < Q N K
68 61 64 65 66 67 syl112anc N K 2 1 < K Q N 1 < Q N K
69 60 68 mpbid N K 2 Q N 1 < Q N K
70 58 69 eqbrtrrd N K 2 Q N < Q N K
71 nnmulcl Q N K Q N K
72 49 62 71 syl2an N K 2 Q N K
73 72 nnred N K 2 Q N K
74 65 73 ltnled N K 2 Q N < Q N K ¬ Q N K Q N
75 70 74 mpbid N K 2 ¬ Q N K Q N
76 45 ad2antrr N K 2 K 2 N Q N 2 x z r | r 2 N z x
77 oveq1 r = Q N K r 2 = Q N K 2
78 77 breq1d r = Q N K r 2 N Q N K 2 N
79 72 adantr N K 2 K 2 N Q N 2 Q N K
80 simpr N K 2 K 2 N Q N 2 K 2 N Q N 2
81 63 adantr N K 2 K 2 N Q N 2 K
82 81 nnsqcld N K 2 K 2 N Q N 2 K 2
83 nnz K 2 K 2
84 82 83 syl N K 2 K 2 N Q N 2 K 2
85 49 nnsqcld N Q N 2
86 9 85 sselid N Q N 2
87 85 nnne0d N Q N 2 0
88 dvdsval2 Q N 2 Q N 2 0 N Q N 2 N N Q N 2
89 86 87 17 88 syl3anc N Q N 2 N N Q N 2
90 55 89 mpbid N N Q N 2
91 90 ad2antrr N K 2 K 2 N Q N 2 N Q N 2
92 86 ad2antrr N K 2 K 2 N Q N 2 Q N 2
93 dvdscmul K 2 N Q N 2 Q N 2 K 2 N Q N 2 Q N 2 K 2 Q N 2 N Q N 2
94 84 91 92 93 syl3anc N K 2 K 2 N Q N 2 K 2 N Q N 2 Q N 2 K 2 Q N 2 N Q N 2
95 80 94 mpd N K 2 K 2 N Q N 2 Q N 2 K 2 Q N 2 N Q N 2
96 57 adantr N K 2 K 2 N Q N 2 Q N
97 81 nncnd N K 2 K 2 N Q N 2 K
98 96 97 sqmuld N K 2 K 2 N Q N 2 Q N K 2 = Q N 2 K 2
99 98 eqcomd N K 2 K 2 N Q N 2 Q N 2 K 2 = Q N K 2
100 nncn N N
101 100 ad2antrr N K 2 K 2 N Q N 2 N
102 85 ad2antrr N K 2 K 2 N Q N 2 Q N 2
103 102 nncnd N K 2 K 2 N Q N 2 Q N 2
104 87 ad2antrr N K 2 K 2 N Q N 2 Q N 2 0
105 101 103 104 divcan2d N K 2 K 2 N Q N 2 Q N 2 N Q N 2 = N
106 95 99 105 3brtr3d N K 2 K 2 N Q N 2 Q N K 2 N
107 78 79 106 elrabd N K 2 K 2 N Q N 2 Q N K r | r 2 N
108 suprzub r | r 2 N x z r | r 2 N z x Q N K r | r 2 N Q N K sup r | r 2 N <
109 10 76 107 108 mp3an2i N K 2 K 2 N Q N 2 Q N K sup r | r 2 N <
110 8 ad2antrr N K 2 K 2 N Q N 2 Q N = sup r | r 2 N <
111 109 110 breqtrrd N K 2 K 2 N Q N 2 Q N K Q N
112 75 111 mtand N K 2 ¬ K 2 N Q N 2
113 112 ex N K 2 ¬ K 2 N Q N 2
114 49 55 113 3jca N Q N Q N 2 N K 2 ¬ K 2 N Q N 2