Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.1 |
|
2 |
|
prmrec.2 |
|
3 |
|
prmrec.3 |
|
4 |
|
prmrec.4 |
|
5 |
|
prmrec.5 |
|
6 |
|
prmrec.6 |
|
7 |
|
prmrec.7 |
|
8 |
|
oveq2 |
|
9 |
8
|
iuneq1d |
|
10 |
9
|
fveq2d |
|
11 |
8
|
sumeq1d |
|
12 |
11
|
oveq2d |
|
13 |
10 12
|
breq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
oveq2 |
|
16 |
15
|
iuneq1d |
|
17 |
16
|
fveq2d |
|
18 |
15
|
sumeq1d |
|
19 |
18
|
oveq2d |
|
20 |
17 19
|
breq12d |
|
21 |
20
|
imbi2d |
|
22 |
|
oveq2 |
|
23 |
22
|
iuneq1d |
|
24 |
23
|
fveq2d |
|
25 |
22
|
sumeq1d |
|
26 |
25
|
oveq2d |
|
27 |
24 26
|
breq12d |
|
28 |
27
|
imbi2d |
|
29 |
|
oveq2 |
|
30 |
29
|
iuneq1d |
|
31 |
30
|
fveq2d |
|
32 |
29
|
sumeq1d |
|
33 |
32
|
oveq2d |
|
34 |
31 33
|
breq12d |
|
35 |
34
|
imbi2d |
|
36 |
|
0le0 |
|
37 |
3
|
nncnd |
|
38 |
37
|
mul01d |
|
39 |
36 38
|
breqtrrid |
|
40 |
2
|
nnred |
|
41 |
40
|
ltp1d |
|
42 |
2
|
nnzd |
|
43 |
42
|
peano2zd |
|
44 |
|
fzn |
|
45 |
43 42 44
|
syl2anc |
|
46 |
41 45
|
mpbid |
|
47 |
46
|
iuneq1d |
|
48 |
|
0iun |
|
49 |
47 48
|
eqtrdi |
|
50 |
49
|
fveq2d |
|
51 |
|
hash0 |
|
52 |
50 51
|
eqtrdi |
|
53 |
46
|
sumeq1d |
|
54 |
|
sum0 |
|
55 |
53 54
|
eqtrdi |
|
56 |
55
|
oveq2d |
|
57 |
39 52 56
|
3brtr4d |
|
58 |
|
fzfi |
|
59 |
|
elfzuz |
|
60 |
2
|
peano2nnd |
|
61 |
|
eluznn |
|
62 |
60 61
|
sylan |
|
63 |
|
eleq1 |
|
64 |
|
breq1 |
|
65 |
63 64
|
anbi12d |
|
66 |
65
|
rabbidv |
|
67 |
|
ovex |
|
68 |
67
|
rabex |
|
69 |
66 7 68
|
fvmpt |
|
70 |
69
|
adantl |
|
71 |
|
ssrab2 |
|
72 |
70 71
|
eqsstrdi |
|
73 |
62 72
|
syldan |
|
74 |
59 73
|
sylan2 |
|
75 |
74
|
ralrimiva |
|
76 |
75
|
adantr |
|
77 |
|
iunss |
|
78 |
76 77
|
sylibr |
|
79 |
|
ssfi |
|
80 |
58 78 79
|
sylancr |
|
81 |
|
hashcl |
|
82 |
80 81
|
syl |
|
83 |
82
|
nn0red |
|
84 |
3
|
nnred |
|
85 |
84
|
adantr |
|
86 |
|
fzfid |
|
87 |
60
|
adantr |
|
88 |
87 59 61
|
syl2an |
|
89 |
|
nnrecre |
|
90 |
|
0re |
|
91 |
|
ifcl |
|
92 |
89 90 91
|
sylancl |
|
93 |
88 92
|
syl |
|
94 |
86 93
|
fsumrecl |
|
95 |
85 94
|
remulcld |
|
96 |
|
prmnn |
|
97 |
96
|
nnrecred |
|
98 |
97
|
adantl |
|
99 |
|
0red |
|
100 |
98 99
|
ifclda |
|
101 |
85 100
|
remulcld |
|
102 |
83 95 101
|
leadd1d |
|
103 |
|
eluzp1p1 |
|
104 |
103
|
adantl |
|
105 |
|
simpl |
|
106 |
|
elfzuz |
|
107 |
92
|
recnd |
|
108 |
62 107
|
syl |
|
109 |
105 106 108
|
syl2an |
|
110 |
|
eleq1 |
|
111 |
|
oveq2 |
|
112 |
110 111
|
ifbieq1d |
|
113 |
104 109 112
|
fsumm1 |
|
114 |
|
eluzelz |
|
115 |
114
|
adantl |
|
116 |
115
|
zcnd |
|
117 |
|
ax-1cn |
|
118 |
|
pncan |
|
119 |
116 117 118
|
sylancl |
|
120 |
119
|
oveq2d |
|
121 |
120
|
sumeq1d |
|
122 |
121
|
oveq1d |
|
123 |
113 122
|
eqtrd |
|
124 |
123
|
oveq2d |
|
125 |
37
|
adantr |
|
126 |
94
|
recnd |
|
127 |
100
|
recnd |
|
128 |
125 126 127
|
adddid |
|
129 |
124 128
|
eqtrd |
|
130 |
129
|
breq2d |
|
131 |
102 130
|
bitr4d |
|
132 |
106 73
|
sylan2 |
|
133 |
132
|
ralrimiva |
|
134 |
133
|
adantr |
|
135 |
|
iunss |
|
136 |
134 135
|
sylibr |
|
137 |
|
ssfi |
|
138 |
58 136 137
|
sylancr |
|
139 |
|
hashcl |
|
140 |
138 139
|
syl |
|
141 |
140
|
nn0red |
|
142 |
|
fveq2 |
|
143 |
142
|
sseq1d |
|
144 |
72
|
ralrimiva |
|
145 |
144
|
adantr |
|
146 |
|
eluznn |
|
147 |
2 146
|
sylan |
|
148 |
147
|
peano2nnd |
|
149 |
143 145 148
|
rspcdva |
|
150 |
|
ssfi |
|
151 |
58 149 150
|
sylancr |
|
152 |
|
hashcl |
|
153 |
151 152
|
syl |
|
154 |
153
|
nn0red |
|
155 |
83 154
|
readdcld |
|
156 |
83 101
|
readdcld |
|
157 |
43
|
adantr |
|
158 |
|
simpr |
|
159 |
2
|
nncnd |
|
160 |
159
|
adantr |
|
161 |
|
pncan |
|
162 |
160 117 161
|
sylancl |
|
163 |
162
|
fveq2d |
|
164 |
158 163
|
eleqtrrd |
|
165 |
|
fzsuc2 |
|
166 |
157 164 165
|
syl2anc |
|
167 |
166
|
iuneq1d |
|
168 |
|
iunxun |
|
169 |
|
ovex |
|
170 |
169 142
|
iunxsn |
|
171 |
170
|
uneq2i |
|
172 |
168 171
|
eqtri |
|
173 |
167 172
|
eqtrdi |
|
174 |
173
|
fveq2d |
|
175 |
|
hashun2 |
|
176 |
80 151 175
|
syl2anc |
|
177 |
174 176
|
eqbrtrd |
|
178 |
85 148
|
nndivred |
|
179 |
|
flle |
|
180 |
178 179
|
syl |
|
181 |
|
elfznn |
|
182 |
181
|
nncnd |
|
183 |
182
|
subid1d |
|
184 |
183
|
breq2d |
|
185 |
184
|
rabbiia |
|
186 |
185
|
fveq2i |
|
187 |
|
1zzd |
|
188 |
3
|
nnnn0d |
|
189 |
|
nn0uz |
|
190 |
|
1m1e0 |
|
191 |
190
|
fveq2i |
|
192 |
189 191
|
eqtr4i |
|
193 |
188 192
|
eleqtrdi |
|
194 |
193
|
adantr |
|
195 |
|
0zd |
|
196 |
148 187 194 195
|
hashdvds |
|
197 |
125
|
subid1d |
|
198 |
197
|
fvoveq1d |
|
199 |
190
|
oveq1i |
|
200 |
|
0m0e0 |
|
201 |
199 200
|
eqtri |
|
202 |
201
|
oveq1i |
|
203 |
148
|
nncnd |
|
204 |
148
|
nnne0d |
|
205 |
203 204
|
div0d |
|
206 |
202 205
|
eqtrid |
|
207 |
206
|
fveq2d |
|
208 |
|
0z |
|
209 |
|
flid |
|
210 |
208 209
|
ax-mp |
|
211 |
207 210
|
eqtrdi |
|
212 |
198 211
|
oveq12d |
|
213 |
178
|
flcld |
|
214 |
213
|
zcnd |
|
215 |
214
|
subid1d |
|
216 |
196 212 215
|
3eqtrd |
|
217 |
186 216
|
eqtr3id |
|
218 |
125 203 204
|
divrecd |
|
219 |
218
|
eqcomd |
|
220 |
180 217 219
|
3brtr4d |
|
221 |
220
|
adantr |
|
222 |
|
eleq1 |
|
223 |
|
breq1 |
|
224 |
222 223
|
anbi12d |
|
225 |
224
|
rabbidv |
|
226 |
67
|
rabex |
|
227 |
225 7 226
|
fvmpt |
|
228 |
148 227
|
syl |
|
229 |
228
|
adantr |
|
230 |
|
simpr |
|
231 |
230
|
biantrurd |
|
232 |
231
|
rabbidv |
|
233 |
229 232
|
eqtr4d |
|
234 |
233
|
fveq2d |
|
235 |
|
iftrue |
|
236 |
235
|
adantl |
|
237 |
236
|
oveq2d |
|
238 |
221 234 237
|
3brtr4d |
|
239 |
36
|
a1i |
|
240 |
|
simpl |
|
241 |
240
|
con3i |
|
242 |
241
|
ralrimivw |
|
243 |
|
rabeq0 |
|
244 |
242 243
|
sylibr |
|
245 |
228 244
|
sylan9eq |
|
246 |
245
|
fveq2d |
|
247 |
246 51
|
eqtrdi |
|
248 |
|
iffalse |
|
249 |
248
|
oveq2d |
|
250 |
38
|
adantr |
|
251 |
249 250
|
sylan9eqr |
|
252 |
239 247 251
|
3brtr4d |
|
253 |
238 252
|
pm2.61dan |
|
254 |
154 101 83 253
|
leadd2dd |
|
255 |
141 155 156 177 254
|
letrd |
|
256 |
|
fzfid |
|
257 |
62 92
|
syl |
|
258 |
105 106 257
|
syl2an |
|
259 |
256 258
|
fsumrecl |
|
260 |
85 259
|
remulcld |
|
261 |
|
letr |
|
262 |
141 156 260 261
|
syl3anc |
|
263 |
255 262
|
mpand |
|
264 |
131 263
|
sylbid |
|
265 |
264
|
expcom |
|
266 |
265
|
a2d |
|
267 |
14 21 28 35 57 266
|
uzind4i |
|
268 |
267
|
com12 |
|