Metamath Proof Explorer


Theorem prn0

Description: A positive real is not empty. (Contributed by NM, 15-May-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prn0 A 𝑷 A

Proof

Step Hyp Ref Expression
1 elnpi A 𝑷 A V A A 𝑸 x A y y < 𝑸 x y A y A x < 𝑸 y
2 simpl2 A V A A 𝑸 x A y y < 𝑸 x y A y A x < 𝑸 y A
3 1 2 sylbi A 𝑷 A
4 0pss A A
5 3 4 sylib A 𝑷 A