Metamath Proof Explorer


Theorem prneimg

Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017)

Ref Expression
Assertion prneimg AUBVCXDYACADBCBDABCD

Proof

Step Hyp Ref Expression
1 preq12bg AUBVCXDYAB=CDA=CB=DA=DB=C
2 orddi A=CB=DA=DB=CA=CA=DA=CB=CB=DA=DB=DB=C
3 simpll A=CA=DA=CB=CB=DA=DB=DB=CA=CA=D
4 pm1.4 B=DB=CB=CB=D
5 4 ad2antll A=CA=DA=CB=CB=DA=DB=DB=CB=CB=D
6 3 5 jca A=CA=DA=CB=CB=DA=DB=DB=CA=CA=DB=CB=D
7 2 6 sylbi A=CB=DA=DB=CA=CA=DB=CB=D
8 1 7 biimtrdi AUBVCXDYAB=CDA=CA=DB=CB=D
9 ianor ¬ACAD¬AC¬AD
10 nne ¬ACA=C
11 nne ¬ADA=D
12 10 11 orbi12i ¬AC¬ADA=CA=D
13 9 12 bitr2i A=CA=D¬ACAD
14 ianor ¬BCBD¬BC¬BD
15 nne ¬BCB=C
16 nne ¬BDB=D
17 15 16 orbi12i ¬BC¬BDB=CB=D
18 14 17 bitr2i B=CB=D¬BCBD
19 13 18 anbi12i A=CA=DB=CB=D¬ACAD¬BCBD
20 8 19 imbitrdi AUBVCXDYAB=CD¬ACAD¬BCBD
21 pm4.56 ¬ACAD¬BCBD¬ACADBCBD
22 20 21 imbitrdi AUBVCXDYAB=CD¬ACADBCBD
23 22 necon2ad AUBVCXDYACADBCBDABCD