Metamath Proof Explorer


Theorem prneimg

Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017)

Ref Expression
Assertion prneimg A U B V C X D Y A C A D B C B D A B C D

Proof

Step Hyp Ref Expression
1 preq12bg A U B V C X D Y A B = C D A = C B = D A = D B = C
2 orddi A = C B = D A = D B = C A = C A = D A = C B = C B = D A = D B = D B = C
3 simpll A = C A = D A = C B = C B = D A = D B = D B = C A = C A = D
4 pm1.4 B = D B = C B = C B = D
5 4 ad2antll A = C A = D A = C B = C B = D A = D B = D B = C B = C B = D
6 3 5 jca A = C A = D A = C B = C B = D A = D B = D B = C A = C A = D B = C B = D
7 2 6 sylbi A = C B = D A = D B = C A = C A = D B = C B = D
8 1 7 syl6bi A U B V C X D Y A B = C D A = C A = D B = C B = D
9 ianor ¬ A C A D ¬ A C ¬ A D
10 nne ¬ A C A = C
11 nne ¬ A D A = D
12 10 11 orbi12i ¬ A C ¬ A D A = C A = D
13 9 12 bitr2i A = C A = D ¬ A C A D
14 ianor ¬ B C B D ¬ B C ¬ B D
15 nne ¬ B C B = C
16 nne ¬ B D B = D
17 15 16 orbi12i ¬ B C ¬ B D B = C B = D
18 14 17 bitr2i B = C B = D ¬ B C B D
19 13 18 anbi12i A = C A = D B = C B = D ¬ A C A D ¬ B C B D
20 8 19 syl6ib A U B V C X D Y A B = C D ¬ A C A D ¬ B C B D
21 pm4.56 ¬ A C A D ¬ B C B D ¬ A C A D B C B D
22 20 21 syl6ib A U B V C X D Y A B = C D ¬ A C A D B C B D
23 22 necon2ad A U B V C X D Y A C A D B C B D A B C D