Metamath Proof Explorer


Theorem prneprprc

Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022)

Ref Expression
Assertion prneprprc A V B W A B ¬ C V A B C D

Proof

Step Hyp Ref Expression
1 prnesn A V B W A B A B D
2 1 adantr A V B W A B ¬ C V A B D
3 prprc1 ¬ C V C D = D
4 3 neeq2d ¬ C V A B C D A B D
5 4 adantl A V B W A B ¬ C V A B C D A B D
6 2 5 mpbird A V B W A B ¬ C V A B C D