Metamath Proof Explorer


Theorem prnmadd

Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prnmadd A 𝑷 B A x B + 𝑸 x A

Proof

Step Hyp Ref Expression
1 prnmax A 𝑷 B A y A B < 𝑸 y
2 ltrelnq < 𝑸 𝑸 × 𝑸
3 2 brel B < 𝑸 y B 𝑸 y 𝑸
4 3 simprd B < 𝑸 y y 𝑸
5 ltexnq y 𝑸 B < 𝑸 y x B + 𝑸 x = y
6 5 biimpcd B < 𝑸 y y 𝑸 x B + 𝑸 x = y
7 4 6 mpd B < 𝑸 y x B + 𝑸 x = y
8 eleq1a y A B + 𝑸 x = y B + 𝑸 x A
9 8 eximdv y A x B + 𝑸 x = y x B + 𝑸 x A
10 7 9 syl5 y A B < 𝑸 y x B + 𝑸 x A
11 10 rexlimiv y A B < 𝑸 y x B + 𝑸 x A
12 1 11 syl A 𝑷 B A x B + 𝑸 x A