Metamath Proof Explorer


Theorem prnmax

Description: A positive real has no largest member. Definition 9-3.1(iii) of Gleason p. 121. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prnmax A 𝑷 B A x A B < 𝑸 x

Proof

Step Hyp Ref Expression
1 eleq1 y = B y A B A
2 1 anbi2d y = B A 𝑷 y A A 𝑷 B A
3 breq1 y = B y < 𝑸 x B < 𝑸 x
4 3 rexbidv y = B x A y < 𝑸 x x A B < 𝑸 x
5 2 4 imbi12d y = B A 𝑷 y A x A y < 𝑸 x A 𝑷 B A x A B < 𝑸 x
6 elnpi A 𝑷 A V A A 𝑸 y A x x < 𝑸 y x A x A y < 𝑸 x
7 6 simprbi A 𝑷 y A x x < 𝑸 y x A x A y < 𝑸 x
8 7 r19.21bi A 𝑷 y A x x < 𝑸 y x A x A y < 𝑸 x
9 8 simprd A 𝑷 y A x A y < 𝑸 x
10 5 9 vtoclg B A A 𝑷 B A x A B < 𝑸 x
11 10 anabsi7 A 𝑷 B A x A B < 𝑸 x