Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
prod0
Next ⟩
prod1
Metamath Proof Explorer
Ascii
Unicode
Theorem
prod0
Description:
A product over the empty set is one.
(Contributed by
Scott Fenton
, 5-Dec-2017)
Ref
Expression
Assertion
prod0
⊢
∏
k
∈
∅
A
=
1
Proof
Step
Hyp
Ref
Expression
1
1z
⊢
1
∈
ℤ
2
nnuz
⊢
ℕ
=
ℤ
≥
1
3
id
⊢
1
∈
ℤ
→
1
∈
ℤ
4
ax-1ne0
⊢
1
≠
0
5
4
a1i
⊢
1
∈
ℤ
→
1
≠
0
6
2
prodfclim1
⊢
1
∈
ℤ
→
seq
1
×
ℕ
×
1
⇝
1
7
0ss
⊢
∅
⊆
ℕ
8
7
a1i
⊢
1
∈
ℤ
→
∅
⊆
ℕ
9
fvconst2g
⊢
1
∈
ℤ
∧
k
∈
ℕ
→
ℕ
×
1
⁡
k
=
1
10
noel
⊢
¬
k
∈
∅
11
10
iffalsei
⊢
if
k
∈
∅
A
1
=
1
12
9
11
eqtr4di
⊢
1
∈
ℤ
∧
k
∈
ℕ
→
ℕ
×
1
⁡
k
=
if
k
∈
∅
A
1
13
10
pm2.21i
⊢
k
∈
∅
→
A
∈
ℂ
14
13
adantl
⊢
1
∈
ℤ
∧
k
∈
∅
→
A
∈
ℂ
15
2
3
5
6
8
12
14
zprodn0
⊢
1
∈
ℤ
→
∏
k
∈
∅
A
=
1
16
1
15
ax-mp
⊢
∏
k
∈
∅
A
=
1