| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 |  | simpr |  | 
						
							| 3 |  | ax-1ne0 |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 | 1 | prodfclim1 |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | 1ex |  | 
						
							| 9 | 8 | fvconst2 |  | 
						
							| 10 |  | ifid |  | 
						
							| 11 | 9 10 | eqtr4di |  | 
						
							| 12 | 11 | adantl |  | 
						
							| 13 |  | 1cnd |  | 
						
							| 14 | 1 2 4 6 7 12 13 | zprodn0 |  | 
						
							| 15 |  | uzf |  | 
						
							| 16 | 15 | fdmi |  | 
						
							| 17 | 16 | eleq2i |  | 
						
							| 18 |  | ndmfv |  | 
						
							| 19 | 17 18 | sylnbir |  | 
						
							| 20 | 19 | sseq2d |  | 
						
							| 21 | 20 | biimpac |  | 
						
							| 22 |  | ss0 |  | 
						
							| 23 |  | prodeq1 |  | 
						
							| 24 |  | prod0 |  | 
						
							| 25 | 23 24 | eqtrdi |  | 
						
							| 26 | 21 22 25 | 3syl |  | 
						
							| 27 | 14 26 | pm2.61dan |  | 
						
							| 28 |  | fz1f1o |  | 
						
							| 29 |  | eqidd |  | 
						
							| 30 |  | simpl |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 |  | 1cnd |  | 
						
							| 33 |  | elfznn |  | 
						
							| 34 | 8 | fvconst2 |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 | 29 30 31 32 36 | fprod |  | 
						
							| 38 |  | nnuz |  | 
						
							| 39 | 38 | prodf1 |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 37 40 | eqtrd |  | 
						
							| 42 | 41 | ex |  | 
						
							| 43 | 42 | exlimdv |  | 
						
							| 44 | 43 | imp |  | 
						
							| 45 | 25 44 | jaoi |  | 
						
							| 46 | 28 45 | syl |  | 
						
							| 47 | 27 46 | jaoi |  |