Metamath Proof Explorer


Theorem prodeq1

Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017)

Ref Expression
Assertion prodeq1 A = B k A C = k B C

Proof

Step Hyp Ref Expression
1 sseq1 A = B A m B m
2 eleq2 A = B k A k B
3 2 ifbid A = B if k A C 1 = if k B C 1
4 3 mpteq2dv A = B k if k A C 1 = k if k B C 1
5 4 seqeq3d A = B seq n × k if k A C 1 = seq n × k if k B C 1
6 5 breq1d A = B seq n × k if k A C 1 y seq n × k if k B C 1 y
7 6 anbi2d A = B y 0 seq n × k if k A C 1 y y 0 seq n × k if k B C 1 y
8 7 exbidv A = B y y 0 seq n × k if k A C 1 y y y 0 seq n × k if k B C 1 y
9 8 rexbidv A = B n m y y 0 seq n × k if k A C 1 y n m y y 0 seq n × k if k B C 1 y
10 4 seqeq3d A = B seq m × k if k A C 1 = seq m × k if k B C 1
11 10 breq1d A = B seq m × k if k A C 1 x seq m × k if k B C 1 x
12 1 9 11 3anbi123d A = B A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x
13 12 rexbidv A = B m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x
14 f1oeq3 A = B f : 1 m 1-1 onto A f : 1 m 1-1 onto B
15 14 anbi1d A = B f : 1 m 1-1 onto A x = seq 1 × n f n / k C m f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
16 15 exbidv A = B f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
17 16 rexbidv A = B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
18 13 17 orbi12d A = B m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
19 18 iotabidv A = B ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m = ι x | m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
20 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
21 df-prod k B C = ι x | m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
22 19 20 21 3eqtr4g A = B k A C = k B C