Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Complex products
prodeq12i
Next ⟩
prodeq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodeq12i
Description:
Equality inference for product.
(Contributed by
Scott Fenton
, 4-Dec-2017)
Ref
Expression
Hypotheses
prodeq12i.1
⊢
A
=
B
prodeq12i.2
⊢
k
∈
A
→
C
=
D
Assertion
prodeq12i
⊢
∏
k
∈
A
C
=
∏
k
∈
B
D
Proof
Step
Hyp
Ref
Expression
1
prodeq12i.1
⊢
A
=
B
2
prodeq12i.2
⊢
k
∈
A
→
C
=
D
3
2
prodeq2i
⊢
∏
k
∈
A
C
=
∏
k
∈
A
D
4
1
prodeq1i
⊢
∏
k
∈
A
D
=
∏
k
∈
B
D
5
3
4
eqtri
⊢
∏
k
∈
A
C
=
∏
k
∈
B
D