Metamath Proof Explorer


Theorem prodeq12i

Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodeq12i.1 A = B
prodeq12i.2 k A C = D
Assertion prodeq12i k A C = k B D

Proof

Step Hyp Ref Expression
1 prodeq12i.1 A = B
2 prodeq12i.2 k A C = D
3 2 prodeq2i k A C = k A D
4 1 prodeq1i k A D = k B D
5 3 4 eqtri k A C = k B D