Metamath Proof Explorer


Theorem prodeq1f

Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017)

Ref Expression
Hypotheses prodeq1f.1 _ k A
prodeq1f.2 _ k B
Assertion prodeq1f A = B k A C = k B C

Proof

Step Hyp Ref Expression
1 prodeq1f.1 _ k A
2 prodeq1f.2 _ k B
3 sseq1 A = B A m B m
4 1 2 nfeq k A = B
5 eleq2 A = B k A k B
6 5 ifbid A = B if k A C 1 = if k B C 1
7 6 adantr A = B k if k A C 1 = if k B C 1
8 4 7 mpteq2da A = B k if k A C 1 = k if k B C 1
9 8 seqeq3d A = B seq n × k if k A C 1 = seq n × k if k B C 1
10 9 breq1d A = B seq n × k if k A C 1 y seq n × k if k B C 1 y
11 10 anbi2d A = B y 0 seq n × k if k A C 1 y y 0 seq n × k if k B C 1 y
12 11 exbidv A = B y y 0 seq n × k if k A C 1 y y y 0 seq n × k if k B C 1 y
13 12 rexbidv A = B n m y y 0 seq n × k if k A C 1 y n m y y 0 seq n × k if k B C 1 y
14 8 seqeq3d A = B seq m × k if k A C 1 = seq m × k if k B C 1
15 14 breq1d A = B seq m × k if k A C 1 x seq m × k if k B C 1 x
16 3 13 15 3anbi123d A = B A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x
17 16 rexbidv A = B m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x
18 f1oeq3 A = B f : 1 m 1-1 onto A f : 1 m 1-1 onto B
19 18 anbi1d A = B f : 1 m 1-1 onto A x = seq 1 × n f n / k C m f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
20 19 exbidv A = B f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
21 20 rexbidv A = B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
22 17 21 orbi12d A = B m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
23 22 iotabidv A = B ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m = ι x | m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
24 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
25 df-prod k B C = ι x | m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
26 23 24 25 3eqtr4g A = B k A C = k B C