Metamath Proof Explorer


Theorem prodeq1i

Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypothesis prodeq1i.1 A = B
Assertion prodeq1i k A C = k B C

Proof

Step Hyp Ref Expression
1 prodeq1i.1 A = B
2 1 sseq1i A m B m
3 1 eleq2i k A k B
4 ifbi k A k B if k A C 1 = if k B C 1
5 3 4 ax-mp if k A C 1 = if k B C 1
6 5 mpteq2i k if k A C 1 = k if k B C 1
7 seqeq3 k if k A C 1 = k if k B C 1 seq n × k if k A C 1 = seq n × k if k B C 1
8 6 7 ax-mp seq n × k if k A C 1 = seq n × k if k B C 1
9 8 breq1i seq n × k if k A C 1 y seq n × k if k B C 1 y
10 9 anbi2i y 0 seq n × k if k A C 1 y y 0 seq n × k if k B C 1 y
11 10 exbii y y 0 seq n × k if k A C 1 y y y 0 seq n × k if k B C 1 y
12 11 rexbii n m y y 0 seq n × k if k A C 1 y n m y y 0 seq n × k if k B C 1 y
13 seqeq3 k if k A C 1 = k if k B C 1 seq m × k if k A C 1 = seq m × k if k B C 1
14 6 13 ax-mp seq m × k if k A C 1 = seq m × k if k B C 1
15 14 breq1i seq m × k if k A C 1 x seq m × k if k B C 1 x
16 2 12 15 3anbi123i A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x
17 16 rexbii m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x
18 f1oeq3 A = B f : 1 m 1-1 onto A f : 1 m 1-1 onto B
19 1 18 ax-mp f : 1 m 1-1 onto A f : 1 m 1-1 onto B
20 19 anbi1i f : 1 m 1-1 onto A x = seq 1 × n f n / k C m f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
21 20 exbii f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
22 21 rexbii m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
23 17 22 orbi12i m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
24 23 iotabii ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m = ι x | m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
25 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
26 df-prod k B C = ι x | m B m n m y y 0 seq n × k if k B C 1 y seq m × k if k B C 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k C m
27 24 25 26 3eqtr4i k A C = k B C