Metamath Proof Explorer


Theorem prodeq2ii

Description: Equality theorem for product, with the class expressions B and C guarded by _I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion prodeq2ii k A I B = I C k A B = k A C

Proof

Step Hyp Ref Expression
1 eluzelz n m n
2 1 adantl k A I B = I C n m n
3 nfra1 k k A I B = I C
4 rsp k A I B = I C k A I B = I C
5 4 adantr k A I B = I C k k A I B = I C
6 ifeq1 I B = I C if k A I B I 1 = if k A I C I 1
7 5 6 syl6 k A I B = I C k k A if k A I B I 1 = if k A I C I 1
8 iffalse ¬ k A if k A I B I 1 = I 1
9 iffalse ¬ k A if k A I C I 1 = I 1
10 8 9 eqtr4d ¬ k A if k A I B I 1 = if k A I C I 1
11 7 10 pm2.61d1 k A I B = I C k if k A I B I 1 = if k A I C I 1
12 fvif I if k A B 1 = if k A I B I 1
13 fvif I if k A C 1 = if k A I C I 1
14 11 12 13 3eqtr4g k A I B = I C k I if k A B 1 = I if k A C 1
15 3 14 mpteq2da k A I B = I C k I if k A B 1 = k I if k A C 1
16 15 adantr k A I B = I C x n k I if k A B 1 = k I if k A C 1
17 16 fveq1d k A I B = I C x n k I if k A B 1 x = k I if k A C 1 x
18 17 adantlr k A I B = I C n m x n k I if k A B 1 x = k I if k A C 1 x
19 eqid k if k A B 1 = k if k A B 1
20 eqid k I if k A B 1 = k I if k A B 1
21 19 20 fvmptex k if k A B 1 x = k I if k A B 1 x
22 eqid k if k A C 1 = k if k A C 1
23 eqid k I if k A C 1 = k I if k A C 1
24 22 23 fvmptex k if k A C 1 x = k I if k A C 1 x
25 18 21 24 3eqtr4g k A I B = I C n m x n k if k A B 1 x = k if k A C 1 x
26 2 25 seqfeq k A I B = I C n m seq n × k if k A B 1 = seq n × k if k A C 1
27 26 breq1d k A I B = I C n m seq n × k if k A B 1 y seq n × k if k A C 1 y
28 27 anbi2d k A I B = I C n m y 0 seq n × k if k A B 1 y y 0 seq n × k if k A C 1 y
29 28 exbidv k A I B = I C n m y y 0 seq n × k if k A B 1 y y y 0 seq n × k if k A C 1 y
30 29 rexbidva k A I B = I C n m y y 0 seq n × k if k A B 1 y n m y y 0 seq n × k if k A C 1 y
31 30 adantr k A I B = I C m n m y y 0 seq n × k if k A B 1 y n m y y 0 seq n × k if k A C 1 y
32 simpr k A I B = I C m m
33 15 adantr k A I B = I C x m k I if k A B 1 = k I if k A C 1
34 33 fveq1d k A I B = I C x m k I if k A B 1 x = k I if k A C 1 x
35 34 21 24 3eqtr4g k A I B = I C x m k if k A B 1 x = k if k A C 1 x
36 35 adantlr k A I B = I C m x m k if k A B 1 x = k if k A C 1 x
37 32 36 seqfeq k A I B = I C m seq m × k if k A B 1 = seq m × k if k A C 1
38 37 breq1d k A I B = I C m seq m × k if k A B 1 x seq m × k if k A C 1 x
39 31 38 3anbi23d k A I B = I C m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
40 39 rexbidva k A I B = I C m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
41 simplr k A I B = I C m f : 1 m 1-1 onto A m
42 nnuz = 1
43 41 42 eleqtrdi k A I B = I C m f : 1 m 1-1 onto A m 1
44 f1of f : 1 m 1-1 onto A f : 1 m A
45 44 ad2antlr k A I B = I C m f : 1 m 1-1 onto A x 1 m f : 1 m A
46 ffvelrn f : 1 m A x 1 m f x A
47 45 46 sylancom k A I B = I C m f : 1 m 1-1 onto A x 1 m f x A
48 simplll k A I B = I C m f : 1 m 1-1 onto A x 1 m k A I B = I C
49 nfcsb1v _ k f x / k I B
50 nfcsb1v _ k f x / k I C
51 49 50 nfeq k f x / k I B = f x / k I C
52 csbeq1a k = f x I B = f x / k I B
53 csbeq1a k = f x I C = f x / k I C
54 52 53 eqeq12d k = f x I B = I C f x / k I B = f x / k I C
55 51 54 rspc f x A k A I B = I C f x / k I B = f x / k I C
56 47 48 55 sylc k A I B = I C m f : 1 m 1-1 onto A x 1 m f x / k I B = f x / k I C
57 fvex f x V
58 csbfv2g f x V f x / k I B = I f x / k B
59 57 58 ax-mp f x / k I B = I f x / k B
60 csbfv2g f x V f x / k I C = I f x / k C
61 57 60 ax-mp f x / k I C = I f x / k C
62 56 59 61 3eqtr3g k A I B = I C m f : 1 m 1-1 onto A x 1 m I f x / k B = I f x / k C
63 elfznn x 1 m x
64 63 adantl k A I B = I C m f : 1 m 1-1 onto A x 1 m x
65 fveq2 n = x f n = f x
66 65 csbeq1d n = x f n / k B = f x / k B
67 eqid n f n / k B = n f n / k B
68 66 67 fvmpti x n f n / k B x = I f x / k B
69 64 68 syl k A I B = I C m f : 1 m 1-1 onto A x 1 m n f n / k B x = I f x / k B
70 65 csbeq1d n = x f n / k C = f x / k C
71 eqid n f n / k C = n f n / k C
72 70 71 fvmpti x n f n / k C x = I f x / k C
73 64 72 syl k A I B = I C m f : 1 m 1-1 onto A x 1 m n f n / k C x = I f x / k C
74 62 69 73 3eqtr4d k A I B = I C m f : 1 m 1-1 onto A x 1 m n f n / k B x = n f n / k C x
75 43 74 seqfveq k A I B = I C m f : 1 m 1-1 onto A seq 1 × n f n / k B m = seq 1 × n f n / k C m
76 75 eqeq2d k A I B = I C m f : 1 m 1-1 onto A x = seq 1 × n f n / k B m x = seq 1 × n f n / k C m
77 76 pm5.32da k A I B = I C m f : 1 m 1-1 onto A x = seq 1 × n f n / k B m f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
78 77 exbidv k A I B = I C m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
79 78 rexbidva k A I B = I C m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
80 40 79 orbi12d k A I B = I C m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
81 80 iotabidv k A I B = I C ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
82 df-prod k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
83 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
84 81 82 83 3eqtr4g k A I B = I C k A B = k A C