| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzelz |
|
| 2 |
1
|
adantl |
|
| 3 |
|
nfra1 |
|
| 4 |
|
rsp |
|
| 5 |
4
|
adantr |
|
| 6 |
|
ifeq1 |
|
| 7 |
5 6
|
syl6 |
|
| 8 |
|
iffalse |
|
| 9 |
|
iffalse |
|
| 10 |
8 9
|
eqtr4d |
|
| 11 |
7 10
|
pm2.61d1 |
|
| 12 |
|
fvif |
|
| 13 |
|
fvif |
|
| 14 |
11 12 13
|
3eqtr4g |
|
| 15 |
3 14
|
mpteq2da |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
fveq1d |
|
| 18 |
17
|
adantlr |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
19 20
|
fvmptex |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
22 23
|
fvmptex |
|
| 25 |
18 21 24
|
3eqtr4g |
|
| 26 |
2 25
|
seqfeq |
|
| 27 |
26
|
breq1d |
|
| 28 |
27
|
anbi2d |
|
| 29 |
28
|
exbidv |
|
| 30 |
29
|
rexbidva |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
15
|
adantr |
|
| 34 |
33
|
fveq1d |
|
| 35 |
34 21 24
|
3eqtr4g |
|
| 36 |
35
|
adantlr |
|
| 37 |
32 36
|
seqfeq |
|
| 38 |
37
|
breq1d |
|
| 39 |
31 38
|
3anbi23d |
|
| 40 |
39
|
rexbidva |
|
| 41 |
|
simplr |
|
| 42 |
|
nnuz |
|
| 43 |
41 42
|
eleqtrdi |
|
| 44 |
|
f1of |
|
| 45 |
44
|
ad2antlr |
|
| 46 |
|
ffvelcdm |
|
| 47 |
45 46
|
sylancom |
|
| 48 |
|
simplll |
|
| 49 |
|
nfcsb1v |
|
| 50 |
|
nfcsb1v |
|
| 51 |
49 50
|
nfeq |
|
| 52 |
|
csbeq1a |
|
| 53 |
|
csbeq1a |
|
| 54 |
52 53
|
eqeq12d |
|
| 55 |
51 54
|
rspc |
|
| 56 |
47 48 55
|
sylc |
|
| 57 |
|
fvex |
|
| 58 |
|
csbfv2g |
|
| 59 |
57 58
|
ax-mp |
|
| 60 |
|
csbfv2g |
|
| 61 |
57 60
|
ax-mp |
|
| 62 |
56 59 61
|
3eqtr3g |
|
| 63 |
|
elfznn |
|
| 64 |
63
|
adantl |
|
| 65 |
|
fveq2 |
|
| 66 |
65
|
csbeq1d |
|
| 67 |
|
eqid |
|
| 68 |
66 67
|
fvmpti |
|
| 69 |
64 68
|
syl |
|
| 70 |
65
|
csbeq1d |
|
| 71 |
|
eqid |
|
| 72 |
70 71
|
fvmpti |
|
| 73 |
64 72
|
syl |
|
| 74 |
62 69 73
|
3eqtr4d |
|
| 75 |
43 74
|
seqfveq |
|
| 76 |
75
|
eqeq2d |
|
| 77 |
76
|
pm5.32da |
|
| 78 |
77
|
exbidv |
|
| 79 |
78
|
rexbidva |
|
| 80 |
40 79
|
orbi12d |
|
| 81 |
80
|
iotabidv |
|
| 82 |
|
df-prod |
|
| 83 |
|
df-prod |
|
| 84 |
81 82 83
|
3eqtr4g |
|