Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Complex products
prodex
Next ⟩
prodeq1f
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodex
Description:
A product is a set.
(Contributed by
Scott Fenton
, 4-Dec-2017)
Ref
Expression
Assertion
prodex
⊢
∏
k
∈
A
B
∈
V
Proof
Step
Hyp
Ref
Expression
1
df-prod
⊢
∏
k
∈
A
B
=
ι
x
|
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
k
∈
ℤ
⟼
if
k
∈
A
B
1
⇝
y
∧
seq
m
×
k
∈
ℤ
⟼
if
k
∈
A
B
1
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
n
∈
ℕ
⟼
⦋
f
⁡
n
/
k
⦌
B
⁡
m
2
iotaex
⊢
ι
x
|
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
k
∈
ℤ
⟼
if
k
∈
A
B
1
⇝
y
∧
seq
m
×
k
∈
ℤ
⟼
if
k
∈
A
B
1
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
n
∈
ℕ
⟼
⦋
f
⁡
n
/
k
⦌
B
⁡
m
∈
V
3
1
2
eqeltri
⊢
∏
k
∈
A
B
∈
V