Metamath Proof Explorer


Theorem prodex

Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion prodex k A B V

Proof

Step Hyp Ref Expression
1 df-prod k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
2 iotaex ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m V
3 1 2 eqeltri k A B V