Metamath Proof Explorer


Theorem prodf

Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodf.1 Z = M
prodf.2 φ M
prodf.3 φ k Z F k
Assertion prodf φ seq M × F : Z

Proof

Step Hyp Ref Expression
1 prodf.1 Z = M
2 prodf.2 φ M
3 prodf.3 φ k Z F k
4 mulcl k x k x
5 4 adantl φ k x k x
6 1 2 3 5 seqf φ seq M × F : Z