Metamath Proof Explorer


Theorem prodf1

Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1 Z = M
Assertion prodf1 N Z seq M × Z × 1 N = 1

Proof

Step Hyp Ref Expression
1 prodf1.1 Z = M
2 1t1e1 1 1 = 1
3 2 a1i N Z 1 1 = 1
4 1 eleq2i N Z N M
5 4 biimpi N Z N M
6 ax-1cn 1
7 elfzuz k M N k M
8 7 1 eleqtrrdi k M N k Z
9 8 adantl N Z k M N k Z
10 fvconst2g 1 k Z Z × 1 k = 1
11 6 9 10 sylancr N Z k M N Z × 1 k = 1
12 3 5 11 seqid3 N Z seq M × Z × 1 N = 1