Metamath Proof Explorer


Theorem prodfclim1

Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1 Z = M
Assertion prodfclim1 M seq M × Z × 1 1

Proof

Step Hyp Ref Expression
1 prodf1.1 Z = M
2 1 prodf1f M seq M × Z × 1 = Z × 1
3 ax-1cn 1
4 1 eqimss2i M Z
5 1 fvexi Z V
6 4 5 climconst2 1 M Z × 1 1
7 3 6 mpan M Z × 1 1
8 2 7 eqbrtrd M seq M × Z × 1 1