Step |
Hyp |
Ref |
Expression |
1 |
|
prodfdiv.1 |
|
2 |
|
prodfdiv.2 |
|
3 |
|
prodfdiv.3 |
|
4 |
|
prodfdiv.4 |
|
5 |
|
prodfdiv.5 |
|
6 |
|
fveq2 |
|
7 |
6
|
oveq2d |
|
8 |
|
eqid |
|
9 |
|
ovex |
|
10 |
7 8 9
|
fvmpt |
|
11 |
10
|
adantl |
|
12 |
1 3 4 11
|
prodfrec |
|
13 |
12
|
oveq2d |
|
14 |
|
eleq1w |
|
15 |
14
|
anbi2d |
|
16 |
|
fveq2 |
|
17 |
16
|
eleq1d |
|
18 |
15 17
|
imbi12d |
|
19 |
18 3
|
chvarvv |
|
20 |
16
|
neeq1d |
|
21 |
15 20
|
imbi12d |
|
22 |
21 4
|
chvarvv |
|
23 |
19 22
|
reccld |
|
24 |
23
|
fmpttd |
|
25 |
24
|
ffvelrnda |
|
26 |
2 3 4
|
divrecd |
|
27 |
11
|
oveq2d |
|
28 |
26 5 27
|
3eqtr4d |
|
29 |
1 2 25 28
|
prodfmul |
|
30 |
|
mulcl |
|
31 |
30
|
adantl |
|
32 |
1 2 31
|
seqcl |
|
33 |
1 3 31
|
seqcl |
|
34 |
1 3 4
|
prodfn0 |
|
35 |
32 33 34
|
divrecd |
|
36 |
13 29 35
|
3eqtr4d |
|