Metamath Proof Explorer


Theorem prodfdiv

Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Hypotheses prodfdiv.1 φ N M
prodfdiv.2 φ k M N F k
prodfdiv.3 φ k M N G k
prodfdiv.4 φ k M N G k 0
prodfdiv.5 φ k M N H k = F k G k
Assertion prodfdiv φ seq M × H N = seq M × F N seq M × G N

Proof

Step Hyp Ref Expression
1 prodfdiv.1 φ N M
2 prodfdiv.2 φ k M N F k
3 prodfdiv.3 φ k M N G k
4 prodfdiv.4 φ k M N G k 0
5 prodfdiv.5 φ k M N H k = F k G k
6 fveq2 n = k G n = G k
7 6 oveq2d n = k 1 G n = 1 G k
8 eqid n M N 1 G n = n M N 1 G n
9 ovex 1 G k V
10 7 8 9 fvmpt k M N n M N 1 G n k = 1 G k
11 10 adantl φ k M N n M N 1 G n k = 1 G k
12 1 3 4 11 prodfrec φ seq M × n M N 1 G n N = 1 seq M × G N
13 12 oveq2d φ seq M × F N seq M × n M N 1 G n N = seq M × F N 1 seq M × G N
14 eleq1w k = n k M N n M N
15 14 anbi2d k = n φ k M N φ n M N
16 fveq2 k = n G k = G n
17 16 eleq1d k = n G k G n
18 15 17 imbi12d k = n φ k M N G k φ n M N G n
19 18 3 chvarvv φ n M N G n
20 16 neeq1d k = n G k 0 G n 0
21 15 20 imbi12d k = n φ k M N G k 0 φ n M N G n 0
22 21 4 chvarvv φ n M N G n 0
23 19 22 reccld φ n M N 1 G n
24 23 fmpttd φ n M N 1 G n : M N
25 24 ffvelrnda φ k M N n M N 1 G n k
26 2 3 4 divrecd φ k M N F k G k = F k 1 G k
27 11 oveq2d φ k M N F k n M N 1 G n k = F k 1 G k
28 26 5 27 3eqtr4d φ k M N H k = F k n M N 1 G n k
29 1 2 25 28 prodfmul φ seq M × H N = seq M × F N seq M × n M N 1 G n N
30 mulcl k x k x
31 30 adantl φ k x k x
32 1 2 31 seqcl φ seq M × F N
33 1 3 31 seqcl φ seq M × G N
34 1 3 4 prodfn0 φ seq M × G N 0
35 32 33 34 divrecd φ seq M × F N seq M × G N = seq M × F N 1 seq M × G N
36 13 29 35 3eqtr4d φ seq M × H N = seq M × F N seq M × G N