| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodfdiv.1 |  | 
						
							| 2 |  | prodfdiv.2 |  | 
						
							| 3 |  | prodfdiv.3 |  | 
						
							| 4 |  | prodfdiv.4 |  | 
						
							| 5 |  | prodfdiv.5 |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 6 | oveq2d |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | ovex |  | 
						
							| 10 | 7 8 9 | fvmpt |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 1 3 4 11 | prodfrec |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 |  | eleq1w |  | 
						
							| 15 | 14 | anbi2d |  | 
						
							| 16 |  | fveq2 |  | 
						
							| 17 | 16 | eleq1d |  | 
						
							| 18 | 15 17 | imbi12d |  | 
						
							| 19 | 18 3 | chvarvv |  | 
						
							| 20 | 16 | neeq1d |  | 
						
							| 21 | 15 20 | imbi12d |  | 
						
							| 22 | 21 4 | chvarvv |  | 
						
							| 23 | 19 22 | reccld |  | 
						
							| 24 | 23 | fmpttd |  | 
						
							| 25 | 24 | ffvelcdmda |  | 
						
							| 26 | 2 3 4 | divrecd |  | 
						
							| 27 | 11 | oveq2d |  | 
						
							| 28 | 26 5 27 | 3eqtr4d |  | 
						
							| 29 | 1 2 25 28 | prodfmul |  | 
						
							| 30 |  | mulcl |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 1 2 31 | seqcl |  | 
						
							| 33 | 1 3 31 | seqcl |  | 
						
							| 34 | 1 3 4 | prodfn0 |  | 
						
							| 35 | 32 33 34 | divrecd |  | 
						
							| 36 | 13 29 35 | 3eqtr4d |  |