Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Product sequences
prodfmul
Next ⟩
prodf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodfmul
Description:
The product of two infinite products.
(Contributed by
Scott Fenton
, 18-Dec-2017)
Ref
Expression
Hypotheses
prodfmul.1
⊢
φ
→
N
∈
ℤ
≥
M
prodfmul.2
⊢
φ
∧
k
∈
M
…
N
→
F
⁡
k
∈
ℂ
prodfmul.3
⊢
φ
∧
k
∈
M
…
N
→
G
⁡
k
∈
ℂ
prodfmul.4
⊢
φ
∧
k
∈
M
…
N
→
H
⁡
k
=
F
⁡
k
⁢
G
⁡
k
Assertion
prodfmul
⊢
φ
→
seq
M
×
H
⁡
N
=
seq
M
×
F
⁡
N
⁢
seq
M
×
G
⁡
N
Proof
Step
Hyp
Ref
Expression
1
prodfmul.1
⊢
φ
→
N
∈
ℤ
≥
M
2
prodfmul.2
⊢
φ
∧
k
∈
M
…
N
→
F
⁡
k
∈
ℂ
3
prodfmul.3
⊢
φ
∧
k
∈
M
…
N
→
G
⁡
k
∈
ℂ
4
prodfmul.4
⊢
φ
∧
k
∈
M
…
N
→
H
⁡
k
=
F
⁡
k
⁢
G
⁡
k
5
mulcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
∈
ℂ
6
5
adantl
⊢
φ
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
∈
ℂ
7
mulcom
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
=
y
⁢
x
8
7
adantl
⊢
φ
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
=
y
⁢
x
9
mulass
⊢
x
∈
ℂ
∧
y
∈
ℂ
∧
z
∈
ℂ
→
x
⁢
y
⁢
z
=
x
⁢
y
⁢
z
10
9
adantl
⊢
φ
∧
x
∈
ℂ
∧
y
∈
ℂ
∧
z
∈
ℂ
→
x
⁢
y
⁢
z
=
x
⁢
y
⁢
z
11
6
8
10
1
2
3
4
seqcaopr
⊢
φ
→
seq
M
×
H
⁡
N
=
seq
M
×
F
⁡
N
⁢
seq
M
×
G
⁡
N