Metamath Proof Explorer


Theorem prodfmul

Description: The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses prodfmul.1 φ N M
prodfmul.2 φ k M N F k
prodfmul.3 φ k M N G k
prodfmul.4 φ k M N H k = F k G k
Assertion prodfmul φ seq M × H N = seq M × F N seq M × G N

Proof

Step Hyp Ref Expression
1 prodfmul.1 φ N M
2 prodfmul.2 φ k M N F k
3 prodfmul.3 φ k M N G k
4 prodfmul.4 φ k M N H k = F k G k
5 mulcl x y x y
6 5 adantl φ x y x y
7 mulcom x y x y = y x
8 7 adantl φ x y x y = y x
9 mulass x y z x y z = x y z
10 9 adantl φ x y z x y z = x y z
11 6 8 10 1 2 3 4 seqcaopr φ seq M × H N = seq M × F N seq M × G N