Step |
Hyp |
Ref |
Expression |
1 |
|
prodfn0.1 |
|
2 |
|
prodfn0.2 |
|
3 |
|
prodfn0.3 |
|
4 |
|
eluzfz2 |
|
5 |
1 4
|
syl |
|
6 |
|
fveq2 |
|
7 |
6
|
neeq1d |
|
8 |
7
|
imbi2d |
|
9 |
|
fveq2 |
|
10 |
9
|
neeq1d |
|
11 |
10
|
imbi2d |
|
12 |
|
fveq2 |
|
13 |
12
|
neeq1d |
|
14 |
13
|
imbi2d |
|
15 |
|
fveq2 |
|
16 |
15
|
neeq1d |
|
17 |
16
|
imbi2d |
|
18 |
|
eluzfz1 |
|
19 |
|
elfzelz |
|
20 |
19
|
adantl |
|
21 |
|
seq1 |
|
22 |
20 21
|
syl |
|
23 |
|
fveq2 |
|
24 |
23
|
neeq1d |
|
25 |
24
|
imbi2d |
|
26 |
3
|
expcom |
|
27 |
25 26
|
vtoclga |
|
28 |
27
|
impcom |
|
29 |
22 28
|
eqnetrd |
|
30 |
29
|
expcom |
|
31 |
18 30
|
syl |
|
32 |
|
elfzouz |
|
33 |
32
|
3ad2ant2 |
|
34 |
|
seqp1 |
|
35 |
33 34
|
syl |
|
36 |
|
elfzofz |
|
37 |
|
elfzuz |
|
38 |
37
|
adantl |
|
39 |
|
elfzuz3 |
|
40 |
|
fzss2 |
|
41 |
39 40
|
syl |
|
42 |
41
|
sselda |
|
43 |
42 2
|
sylan2 |
|
44 |
43
|
anassrs |
|
45 |
|
mulcl |
|
46 |
45
|
adantl |
|
47 |
38 44 46
|
seqcl |
|
48 |
36 47
|
sylan2 |
|
49 |
48
|
3adant3 |
|
50 |
|
fzofzp1 |
|
51 |
|
fveq2 |
|
52 |
51
|
eleq1d |
|
53 |
52
|
imbi2d |
|
54 |
2
|
expcom |
|
55 |
53 54
|
vtoclga |
|
56 |
50 55
|
syl |
|
57 |
56
|
impcom |
|
58 |
57
|
3adant3 |
|
59 |
|
simp3 |
|
60 |
51
|
neeq1d |
|
61 |
60
|
imbi2d |
|
62 |
61 26
|
vtoclga |
|
63 |
62
|
impcom |
|
64 |
50 63
|
sylan2 |
|
65 |
64
|
3adant3 |
|
66 |
49 58 59 65
|
mulne0d |
|
67 |
35 66
|
eqnetrd |
|
68 |
67
|
3exp |
|
69 |
68
|
com12 |
|
70 |
69
|
a2d |
|
71 |
8 11 14 17 31 70
|
fzind2 |
|
72 |
5 71
|
mpcom |
|