| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfn0.1 |
|
| 2 |
|
prodfn0.2 |
|
| 3 |
|
prodfn0.3 |
|
| 4 |
|
eluzfz2 |
|
| 5 |
1 4
|
syl |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
neeq1d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
neeq1d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
neeq1d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
neeq1d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
eluzfz1 |
|
| 19 |
|
elfzelz |
|
| 20 |
19
|
adantl |
|
| 21 |
|
seq1 |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
neeq1d |
|
| 25 |
24
|
imbi2d |
|
| 26 |
3
|
expcom |
|
| 27 |
25 26
|
vtoclga |
|
| 28 |
27
|
impcom |
|
| 29 |
22 28
|
eqnetrd |
|
| 30 |
29
|
expcom |
|
| 31 |
18 30
|
syl |
|
| 32 |
|
elfzouz |
|
| 33 |
32
|
3ad2ant2 |
|
| 34 |
|
seqp1 |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
elfzofz |
|
| 37 |
|
elfzuz |
|
| 38 |
37
|
adantl |
|
| 39 |
|
elfzuz3 |
|
| 40 |
|
fzss2 |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
sselda |
|
| 43 |
42 2
|
sylan2 |
|
| 44 |
43
|
anassrs |
|
| 45 |
|
mulcl |
|
| 46 |
45
|
adantl |
|
| 47 |
38 44 46
|
seqcl |
|
| 48 |
36 47
|
sylan2 |
|
| 49 |
48
|
3adant3 |
|
| 50 |
|
fzofzp1 |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
eleq1d |
|
| 53 |
52
|
imbi2d |
|
| 54 |
2
|
expcom |
|
| 55 |
53 54
|
vtoclga |
|
| 56 |
50 55
|
syl |
|
| 57 |
56
|
impcom |
|
| 58 |
57
|
3adant3 |
|
| 59 |
|
simp3 |
|
| 60 |
51
|
neeq1d |
|
| 61 |
60
|
imbi2d |
|
| 62 |
61 26
|
vtoclga |
|
| 63 |
62
|
impcom |
|
| 64 |
50 63
|
sylan2 |
|
| 65 |
64
|
3adant3 |
|
| 66 |
49 58 59 65
|
mulne0d |
|
| 67 |
35 66
|
eqnetrd |
|
| 68 |
67
|
3exp |
|
| 69 |
68
|
com12 |
|
| 70 |
69
|
a2d |
|
| 71 |
8 11 14 17 31 70
|
fzind2 |
|
| 72 |
5 71
|
mpcom |
|