Metamath Proof Explorer


Theorem prodfzo03

Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses prodfzo03.1 k = 0 D = A
prodfzo03.2 k = 1 D = B
prodfzo03.3 k = 2 D = C
prodfzo03.a φ k 0 ..^ 3 D
Assertion prodfzo03 φ k 0 ..^ 3 D = A B C

Proof

Step Hyp Ref Expression
1 prodfzo03.1 k = 0 D = A
2 prodfzo03.2 k = 1 D = B
3 prodfzo03.3 k = 2 D = C
4 prodfzo03.a φ k 0 ..^ 3 D
5 fzodisjsn 0 ..^ 2 2 =
6 5 a1i φ 0 ..^ 2 2 =
7 2p1e3 2 + 1 = 3
8 7 oveq2i 0 ..^ 2 + 1 = 0 ..^ 3
9 2eluzge0 2 0
10 fzosplitsn 2 0 0 ..^ 2 + 1 = 0 ..^ 2 2
11 9 10 ax-mp 0 ..^ 2 + 1 = 0 ..^ 2 2
12 8 11 eqtr3i 0 ..^ 3 = 0 ..^ 2 2
13 12 a1i φ 0 ..^ 3 = 0 ..^ 2 2
14 fzofi 0 ..^ 3 Fin
15 14 a1i φ 0 ..^ 3 Fin
16 6 13 15 4 fprodsplit φ k 0 ..^ 3 D = k 0 ..^ 2 D k 2 D
17 0ne1 0 1
18 disjsn2 0 1 0 1 =
19 17 18 mp1i φ 0 1 =
20 fzo0to2pr 0 ..^ 2 = 0 1
21 df-pr 0 1 = 0 1
22 20 21 eqtri 0 ..^ 2 = 0 1
23 22 a1i φ 0 ..^ 2 = 0 1
24 fzofi 0 ..^ 2 Fin
25 24 a1i φ 0 ..^ 2 Fin
26 2z 2
27 3z 3
28 2re 2
29 3re 3
30 2lt3 2 < 3
31 28 29 30 ltleii 2 3
32 eluz2 3 2 2 3 2 3
33 26 27 31 32 mpbir3an 3 2
34 fzoss2 3 2 0 ..^ 2 0 ..^ 3
35 33 34 ax-mp 0 ..^ 2 0 ..^ 3
36 35 sseli k 0 ..^ 2 k 0 ..^ 3
37 36 4 sylan2 φ k 0 ..^ 2 D
38 19 23 25 37 fprodsplit φ k 0 ..^ 2 D = k 0 D k 1 D
39 38 oveq1d φ k 0 ..^ 2 D k 2 D = k 0 D k 1 D k 2 D
40 16 39 eqtrd φ k 0 ..^ 3 D = k 0 D k 1 D k 2 D
41 snfi 0 Fin
42 41 a1i φ 0 Fin
43 velsn k 0 k = 0
44 1 adantl φ k = 0 D = A
45 simpr φ k 0 ..^ 3 D = A D = A
46 4 adantr φ k 0 ..^ 3 D = A D
47 45 46 eqeltrrd φ k 0 ..^ 3 D = A A
48 c0ex 0 V
49 48 tpid1 0 0 1 2
50 fzo0to3tp 0 ..^ 3 = 0 1 2
51 49 50 eleqtrri 0 0 ..^ 3
52 eqid A = A
53 1 eqeq1d k = 0 D = A A = A
54 53 rspcev 0 0 ..^ 3 A = A k 0 ..^ 3 D = A
55 51 52 54 mp2an k 0 ..^ 3 D = A
56 55 a1i φ k 0 ..^ 3 D = A
57 47 56 r19.29a φ A
58 57 adantr φ k = 0 A
59 44 58 eqeltrd φ k = 0 D
60 43 59 sylan2b φ k 0 D
61 42 60 fprodcl φ k 0 D
62 snfi 1 Fin
63 62 a1i φ 1 Fin
64 velsn k 1 k = 1
65 2 adantl φ k = 1 D = B
66 simpr φ k 0 ..^ 3 D = B D = B
67 4 adantr φ k 0 ..^ 3 D = B D
68 66 67 eqeltrrd φ k 0 ..^ 3 D = B B
69 1ex 1 V
70 69 tpid2 1 0 1 2
71 70 50 eleqtrri 1 0 ..^ 3
72 eqid B = B
73 2 eqeq1d k = 1 D = B B = B
74 73 rspcev 1 0 ..^ 3 B = B k 0 ..^ 3 D = B
75 71 72 74 mp2an k 0 ..^ 3 D = B
76 75 a1i φ k 0 ..^ 3 D = B
77 68 76 r19.29a φ B
78 77 adantr φ k = 1 B
79 65 78 eqeltrd φ k = 1 D
80 64 79 sylan2b φ k 1 D
81 63 80 fprodcl φ k 1 D
82 snfi 2 Fin
83 82 a1i φ 2 Fin
84 velsn k 2 k = 2
85 3 adantl φ k = 2 D = C
86 simpr φ k 0 ..^ 3 D = C D = C
87 4 adantr φ k 0 ..^ 3 D = C D
88 86 87 eqeltrrd φ k 0 ..^ 3 D = C C
89 2ex 2 V
90 89 tpid3 2 0 1 2
91 90 50 eleqtrri 2 0 ..^ 3
92 eqid C = C
93 3 eqeq1d k = 2 D = C C = C
94 93 rspcev 2 0 ..^ 3 C = C k 0 ..^ 3 D = C
95 91 92 94 mp2an k 0 ..^ 3 D = C
96 95 a1i φ k 0 ..^ 3 D = C
97 88 96 r19.29a φ C
98 97 adantr φ k = 2 C
99 85 98 eqeltrd φ k = 2 D
100 84 99 sylan2b φ k 2 D
101 83 100 fprodcl φ k 2 D
102 61 81 101 mulassd φ k 0 D k 1 D k 2 D = k 0 D k 1 D k 2 D
103 0nn0 0 0
104 103 a1i φ 0 0
105 1 prodsn 0 0 A k 0 D = A
106 104 57 105 syl2anc φ k 0 D = A
107 1nn0 1 0
108 107 a1i φ 1 0
109 2 prodsn 1 0 B k 1 D = B
110 108 77 109 syl2anc φ k 1 D = B
111 2nn0 2 0
112 111 a1i φ 2 0
113 3 prodsn 2 0 C k 2 D = C
114 112 97 113 syl2anc φ k 2 D = C
115 110 114 oveq12d φ k 1 D k 2 D = B C
116 106 115 oveq12d φ k 0 D k 1 D k 2 D = A B C
117 40 102 116 3eqtrd φ k 0 ..^ 3 D = A B C