Metamath Proof Explorer


Theorem prodfzo03

Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses prodfzo03.1 k=0D=A
prodfzo03.2 k=1D=B
prodfzo03.3 k=2D=C
prodfzo03.a φk0..^3D
Assertion prodfzo03 φk0..^3D=ABC

Proof

Step Hyp Ref Expression
1 prodfzo03.1 k=0D=A
2 prodfzo03.2 k=1D=B
3 prodfzo03.3 k=2D=C
4 prodfzo03.a φk0..^3D
5 fzodisjsn 0..^22=
6 5 a1i φ0..^22=
7 2p1e3 2+1=3
8 7 oveq2i 0..^2+1=0..^3
9 2eluzge0 20
10 fzosplitsn 200..^2+1=0..^22
11 9 10 ax-mp 0..^2+1=0..^22
12 8 11 eqtr3i 0..^3=0..^22
13 12 a1i φ0..^3=0..^22
14 fzofi 0..^3Fin
15 14 a1i φ0..^3Fin
16 6 13 15 4 fprodsplit φk0..^3D=k0..^2Dk2D
17 0ne1 01
18 disjsn2 0101=
19 17 18 mp1i φ01=
20 fzo0to2pr 0..^2=01
21 df-pr 01=01
22 20 21 eqtri 0..^2=01
23 22 a1i φ0..^2=01
24 fzofi 0..^2Fin
25 24 a1i φ0..^2Fin
26 2z 2
27 3z 3
28 2re 2
29 3re 3
30 2lt3 2<3
31 28 29 30 ltleii 23
32 eluz2 322323
33 26 27 31 32 mpbir3an 32
34 fzoss2 320..^20..^3
35 33 34 ax-mp 0..^20..^3
36 35 sseli k0..^2k0..^3
37 36 4 sylan2 φk0..^2D
38 19 23 25 37 fprodsplit φk0..^2D=k0Dk1D
39 38 oveq1d φk0..^2Dk2D=k0Dk1Dk2D
40 16 39 eqtrd φk0..^3D=k0Dk1Dk2D
41 snfi 0Fin
42 41 a1i φ0Fin
43 velsn k0k=0
44 1 adantl φk=0D=A
45 simpr φk0..^3D=AD=A
46 4 adantr φk0..^3D=AD
47 45 46 eqeltrrd φk0..^3D=AA
48 c0ex 0V
49 48 tpid1 0012
50 fzo0to3tp 0..^3=012
51 49 50 eleqtrri 00..^3
52 eqid A=A
53 1 eqeq1d k=0D=AA=A
54 53 rspcev 00..^3A=Ak0..^3D=A
55 51 52 54 mp2an k0..^3D=A
56 55 a1i φk0..^3D=A
57 47 56 r19.29a φA
58 57 adantr φk=0A
59 44 58 eqeltrd φk=0D
60 43 59 sylan2b φk0D
61 42 60 fprodcl φk0D
62 snfi 1Fin
63 62 a1i φ1Fin
64 velsn k1k=1
65 2 adantl φk=1D=B
66 simpr φk0..^3D=BD=B
67 4 adantr φk0..^3D=BD
68 66 67 eqeltrrd φk0..^3D=BB
69 1ex 1V
70 69 tpid2 1012
71 70 50 eleqtrri 10..^3
72 eqid B=B
73 2 eqeq1d k=1D=BB=B
74 73 rspcev 10..^3B=Bk0..^3D=B
75 71 72 74 mp2an k0..^3D=B
76 75 a1i φk0..^3D=B
77 68 76 r19.29a φB
78 77 adantr φk=1B
79 65 78 eqeltrd φk=1D
80 64 79 sylan2b φk1D
81 63 80 fprodcl φk1D
82 snfi 2Fin
83 82 a1i φ2Fin
84 velsn k2k=2
85 3 adantl φk=2D=C
86 simpr φk0..^3D=CD=C
87 4 adantr φk0..^3D=CD
88 86 87 eqeltrrd φk0..^3D=CC
89 2ex 2V
90 89 tpid3 2012
91 90 50 eleqtrri 20..^3
92 eqid C=C
93 3 eqeq1d k=2D=CC=C
94 93 rspcev 20..^3C=Ck0..^3D=C
95 91 92 94 mp2an k0..^3D=C
96 95 a1i φk0..^3D=C
97 88 96 r19.29a φC
98 97 adantr φk=2C
99 85 98 eqeltrd φk=2D
100 84 99 sylan2b φk2D
101 83 100 fprodcl φk2D
102 61 81 101 mulassd φk0Dk1Dk2D=k0Dk1Dk2D
103 0nn0 00
104 103 a1i φ00
105 1 prodsn 00Ak0D=A
106 104 57 105 syl2anc φk0D=A
107 1nn0 10
108 107 a1i φ10
109 2 prodsn 10Bk1D=B
110 108 77 109 syl2anc φk1D=B
111 2nn0 20
112 111 a1i φ20
113 3 prodsn 20Ck2D=C
114 112 97 113 syl2anc φk2D=C
115 110 114 oveq12d φk1Dk2D=BC
116 106 115 oveq12d φk0Dk1Dk2D=ABC
117 40 102 116 3eqtrd φk0..^3D=ABC