Metamath Proof Explorer


Theorem prodge0ld

Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)

Ref Expression
Hypotheses prodge0ld.1 φ A
prodge0ld.2 φ B +
prodge0ld.3 φ 0 A B
Assertion prodge0ld φ 0 A

Proof

Step Hyp Ref Expression
1 prodge0ld.1 φ A
2 prodge0ld.2 φ B +
3 prodge0ld.3 φ 0 A B
4 2 rpcnd φ B
5 1 recnd φ A
6 4 5 mulcomd φ B A = A B
7 3 6 breqtrrd φ 0 B A
8 2 1 7 prodge0rd φ 0 A