Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
prodge0ld
Metamath Proof Explorer
Description: Infer that a multiplier is nonnegative from a positive multiplicand and
nonnegative product. (Contributed by NM , 2-Jul-2005) (Revised by AV , 9-Jul-2022)
Ref
Expression
Hypotheses
prodge0ld.1
⊢ φ → A ∈ ℝ
prodge0ld.2
⊢ φ → B ∈ ℝ +
prodge0ld.3
⊢ φ → 0 ≤ A ⁢ B
Assertion
prodge0ld
⊢ φ → 0 ≤ A
Proof
Step
Hyp
Ref
Expression
1
prodge0ld.1
⊢ φ → A ∈ ℝ
2
prodge0ld.2
⊢ φ → B ∈ ℝ +
3
prodge0ld.3
⊢ φ → 0 ≤ A ⁢ B
4
2
rpcnd
⊢ φ → B ∈ ℂ
5
1
recnd
⊢ φ → A ∈ ℂ
6
4 5
mulcomd
⊢ φ → B ⁢ A = A ⁢ B
7
3 6
breqtrrd
⊢ φ → 0 ≤ B ⁢ A
8
2 1 7
prodge0rd
⊢ φ → 0 ≤ A