Metamath Proof Explorer


Theorem prodge0rd

Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 27-May-2016) (Revised by AV, 9-Jul-2022)

Ref Expression
Hypotheses prodge0rd.1 φ A +
prodge0rd.2 φ B
prodge0rd.3 φ 0 A B
Assertion prodge0rd φ 0 B

Proof

Step Hyp Ref Expression
1 prodge0rd.1 φ A +
2 prodge0rd.2 φ B
3 prodge0rd.3 φ 0 A B
4 0red φ 0
5 1 rpred φ A
6 5 2 remulcld φ A B
7 4 6 3 lensymd φ ¬ A B < 0
8 5 adantr φ 0 < B A
9 2 renegcld φ B
10 9 adantr φ 0 < B B
11 1 rpgt0d φ 0 < A
12 11 adantr φ 0 < B 0 < A
13 simpr φ 0 < B 0 < B
14 8 10 12 13 mulgt0d φ 0 < B 0 < A B
15 5 recnd φ A
16 15 adantr φ 0 < B A
17 2 recnd φ B
18 17 adantr φ 0 < B B
19 16 18 mulneg2d φ 0 < B A B = A B
20 14 19 breqtrd φ 0 < B 0 < A B
21 20 ex φ 0 < B 0 < A B
22 2 lt0neg1d φ B < 0 0 < B
23 6 lt0neg1d φ A B < 0 0 < A B
24 21 22 23 3imtr4d φ B < 0 A B < 0
25 7 24 mtod φ ¬ B < 0
26 4 2 25 nltled φ 0 B