Metamath Proof Explorer


Theorem prodgt02

Description: Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005)

Ref Expression
Assertion prodgt02 A B 0 B 0 < A B 0 < A

Proof

Step Hyp Ref Expression
1 recn A A
2 recn B B
3 mulcom A B A B = B A
4 1 2 3 syl2an A B A B = B A
5 4 breq2d A B 0 < A B 0 < B A
6 5 biimpd A B 0 < A B 0 < B A
7 prodgt0 B A 0 B 0 < B A 0 < A
8 7 ex B A 0 B 0 < B A 0 < A
9 8 ancoms A B 0 B 0 < B A 0 < A
10 6 9 sylan2d A B 0 B 0 < A B 0 < A
11 10 imp A B 0 B 0 < A B 0 < A