Metamath Proof Explorer


Theorem prodmolem2

Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F = k if k A B 1
prodmo.2 φ k A B
prodmo.3 G = j f j / k B
Assertion prodmolem2 φ m A m n m y y 0 seq n × F y seq m × F x m f f : 1 m 1-1 onto A z = seq 1 × G m x = z

Proof

Step Hyp Ref Expression
1 prodmo.1 F = k if k A B 1
2 prodmo.2 φ k A B
3 prodmo.3 G = j f j / k B
4 3simpb A m n m y y 0 seq n × F y seq m × F x A m seq m × F x
5 4 reximi m A m n m y y 0 seq n × F y seq m × F x m A m seq m × F x
6 fveq2 m = w m = w
7 6 sseq2d m = w A m A w
8 seqeq1 m = w seq m × F = seq w × F
9 8 breq1d m = w seq m × F x seq w × F x
10 7 9 anbi12d m = w A m seq m × F x A w seq w × F x
11 10 cbvrexvw m A m seq m × F x w A w seq w × F x
12 reeanv w m A w seq w × F x f f : 1 m 1-1 onto A z = seq 1 × G m w A w seq w × F x m f f : 1 m 1-1 onto A z = seq 1 × G m
13 simprlr φ w m A w seq w × F x f : 1 m 1-1 onto A seq w × F x
14 simprll φ w m A w seq w × F x f : 1 m 1-1 onto A A w
15 uzssz w
16 zssre
17 15 16 sstri w
18 14 17 sstrdi φ w m A w seq w × F x f : 1 m 1-1 onto A A
19 ltso < Or
20 soss A < Or < Or A
21 18 19 20 mpisyl φ w m A w seq w × F x f : 1 m 1-1 onto A < Or A
22 fzfi 1 m Fin
23 ovex 1 m V
24 23 f1oen f : 1 m 1-1 onto A 1 m A
25 24 ad2antll φ w m A w seq w × F x f : 1 m 1-1 onto A 1 m A
26 25 ensymd φ w m A w seq w × F x f : 1 m 1-1 onto A A 1 m
27 enfii 1 m Fin A 1 m A Fin
28 22 26 27 sylancr φ w m A w seq w × F x f : 1 m 1-1 onto A A Fin
29 fz1iso < Or A A Fin g g Isom < , < 1 A A
30 21 28 29 syl2anc φ w m A w seq w × F x f : 1 m 1-1 onto A g g Isom < , < 1 A A
31 2 ad4ant14 φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A k A B
32 eqid j g j / k B = j g j / k B
33 simplrr φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A m
34 simplrl φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A w
35 simplll A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A A w
36 35 adantl φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A A w
37 simprlr φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A f : 1 m 1-1 onto A
38 simprr φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A g Isom < , < 1 A A
39 1 31 3 32 33 34 36 37 38 prodmolem2a φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A seq w × F seq 1 × G m
40 39 expr φ w m A w seq w × F x f : 1 m 1-1 onto A g Isom < , < 1 A A seq w × F seq 1 × G m
41 40 exlimdv φ w m A w seq w × F x f : 1 m 1-1 onto A g g Isom < , < 1 A A seq w × F seq 1 × G m
42 30 41 mpd φ w m A w seq w × F x f : 1 m 1-1 onto A seq w × F seq 1 × G m
43 climuni seq w × F x seq w × F seq 1 × G m x = seq 1 × G m
44 13 42 43 syl2anc φ w m A w seq w × F x f : 1 m 1-1 onto A x = seq 1 × G m
45 eqeq2 z = seq 1 × G m x = z x = seq 1 × G m
46 44 45 syl5ibrcom φ w m A w seq w × F x f : 1 m 1-1 onto A z = seq 1 × G m x = z
47 46 expr φ w m A w seq w × F x f : 1 m 1-1 onto A z = seq 1 × G m x = z
48 47 impd φ w m A w seq w × F x f : 1 m 1-1 onto A z = seq 1 × G m x = z
49 48 exlimdv φ w m A w seq w × F x f f : 1 m 1-1 onto A z = seq 1 × G m x = z
50 49 expimpd φ w m A w seq w × F x f f : 1 m 1-1 onto A z = seq 1 × G m x = z
51 50 rexlimdvva φ w m A w seq w × F x f f : 1 m 1-1 onto A z = seq 1 × G m x = z
52 12 51 syl5bir φ w A w seq w × F x m f f : 1 m 1-1 onto A z = seq 1 × G m x = z
53 52 expdimp φ w A w seq w × F x m f f : 1 m 1-1 onto A z = seq 1 × G m x = z
54 11 53 sylan2b φ m A m seq m × F x m f f : 1 m 1-1 onto A z = seq 1 × G m x = z
55 5 54 sylan2 φ m A m n m y y 0 seq n × F y seq m × F x m f f : 1 m 1-1 onto A z = seq 1 × G m x = z