| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodmo.1 |
|
| 2 |
|
prodmo.2 |
|
| 3 |
|
prodmo.3 |
|
| 4 |
|
3simpb |
|
| 5 |
4
|
reximi |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
sseq2d |
|
| 8 |
|
seqeq1 |
|
| 9 |
8
|
breq1d |
|
| 10 |
7 9
|
anbi12d |
|
| 11 |
10
|
cbvrexvw |
|
| 12 |
|
reeanv |
|
| 13 |
|
simprlr |
|
| 14 |
|
simprll |
|
| 15 |
|
uzssz |
|
| 16 |
|
zssre |
|
| 17 |
15 16
|
sstri |
|
| 18 |
14 17
|
sstrdi |
|
| 19 |
|
ltso |
|
| 20 |
|
soss |
|
| 21 |
18 19 20
|
mpisyl |
|
| 22 |
|
fzfi |
|
| 23 |
|
ovex |
|
| 24 |
23
|
f1oen |
|
| 25 |
24
|
ad2antll |
|
| 26 |
25
|
ensymd |
|
| 27 |
|
enfii |
|
| 28 |
22 26 27
|
sylancr |
|
| 29 |
|
fz1iso |
|
| 30 |
21 28 29
|
syl2anc |
|
| 31 |
2
|
ad4ant14 |
|
| 32 |
|
eqid |
|
| 33 |
|
simplrr |
|
| 34 |
|
simplrl |
|
| 35 |
|
simplll |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simprlr |
|
| 38 |
|
simprr |
|
| 39 |
1 31 3 32 33 34 36 37 38
|
prodmolem2a |
|
| 40 |
39
|
expr |
|
| 41 |
40
|
exlimdv |
|
| 42 |
30 41
|
mpd |
|
| 43 |
|
climuni |
|
| 44 |
13 42 43
|
syl2anc |
|
| 45 |
|
eqeq2 |
|
| 46 |
44 45
|
syl5ibrcom |
|
| 47 |
46
|
expr |
|
| 48 |
47
|
impd |
|
| 49 |
48
|
exlimdv |
|
| 50 |
49
|
expimpd |
|
| 51 |
50
|
rexlimdvva |
|
| 52 |
12 51
|
biimtrrid |
|
| 53 |
52
|
expdimp |
|
| 54 |
11 53
|
sylan2b |
|
| 55 |
5 54
|
sylan2 |
|