Metamath Proof Explorer


Theorem prodmolem2a

Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F=kifkAB1
prodmo.2 φkAB
prodmo.3 G=jfj/kB
prodmolem2.4 H=jKj/kB
prodmolem2.5 φN
prodmolem2.6 φM
prodmolem2.7 φAM
prodmolem2.8 φf:1N1-1 ontoA
prodmolem2.9 φKIsom<,<1AA
Assertion prodmolem2a φseqM×Fseq1×GN

Proof

Step Hyp Ref Expression
1 prodmo.1 F=kifkAB1
2 prodmo.2 φkAB
3 prodmo.3 G=jfj/kB
4 prodmolem2.4 H=jKj/kB
5 prodmolem2.5 φN
6 prodmolem2.6 φM
7 prodmolem2.7 φAM
8 prodmolem2.8 φf:1N1-1 ontoA
9 prodmolem2.9 φKIsom<,<1AA
10 fzfid φ1NFin
11 10 8 hasheqf1od φ1N=A
12 5 nnnn0d φN0
13 hashfz1 N01N=N
14 12 13 syl φ1N=N
15 11 14 eqtr3d φA=N
16 15 oveq2d φ1A=1N
17 isoeq4 1A=1NKIsom<,<1AAKIsom<,<1NA
18 16 17 syl φKIsom<,<1AAKIsom<,<1NA
19 9 18 mpbid φKIsom<,<1NA
20 isof1o KIsom<,<1NAK:1N1-1 ontoA
21 f1of K:1N1-1 ontoAK:1NA
22 19 20 21 3syl φK:1NA
23 nnuz =1
24 5 23 eleqtrdi φN1
25 eluzfz2 N1N1N
26 24 25 syl φN1N
27 22 26 ffvelrnd φKNA
28 7 27 sseldd φKNM
29 7 sselda φjAjM
30 19 20 syl φK:1N1-1 ontoA
31 f1ocnvfv2 K:1N1-1 ontoAjAKK-1j=j
32 30 31 sylan φjAKK-1j=j
33 f1ocnv K:1N1-1 ontoAK-1:A1-1 onto1N
34 f1of K-1:A1-1 onto1NK-1:A1N
35 30 33 34 3syl φK-1:A1N
36 35 ffvelrnda φjAK-1j1N
37 elfzle2 K-1j1NK-1jN
38 36 37 syl φjAK-1jN
39 19 adantr φjAKIsom<,<1NA
40 fzssuz 1N1
41 uzssz 1
42 zssre
43 41 42 sstri 1
44 40 43 sstri 1N
45 ressxr *
46 44 45 sstri 1N*
47 46 a1i φjA1N*
48 uzssz M
49 48 42 sstri M
50 49 45 sstri M*
51 7 50 sstrdi φA*
52 51 adantr φjAA*
53 26 adantr φjAN1N
54 leisorel KIsom<,<1NA1N*A*K-1j1NN1NK-1jNKK-1jKN
55 39 47 52 36 53 54 syl122anc φjAK-1jNKK-1jKN
56 38 55 mpbid φjAKK-1jKN
57 32 56 eqbrtrrd φjAjKN
58 7 48 sstrdi φA
59 58 sselda φjAj
60 eluzelz KNMKN
61 28 60 syl φKN
62 61 adantr φjAKN
63 eluz jKNKNjjKN
64 59 62 63 syl2anc φjAKNjjKN
65 57 64 mpbird φjAKNj
66 elfzuzb jMKNjMKNj
67 29 65 66 sylanbrc φjAjMKN
68 67 ex φjAjMKN
69 68 ssrdv φAMKN
70 1 2 28 69 fprodcvg φseqM×FseqM×FKN
71 mulid2 m1m=m
72 71 adantl φm1m=m
73 mulid1 mm1=m
74 73 adantl φmm1=m
75 mulcl mxmx
76 75 adantl φmxmx
77 1cnd φ1
78 26 16 eleqtrrd φN1A
79 iftrue kAifkAB1=B
80 79 adantl φkAifkAB1=B
81 80 2 eqeltrd φkAifkAB1
82 81 ex φkAifkAB1
83 iffalse ¬kAifkAB1=1
84 ax-1cn 1
85 83 84 eqeltrdi ¬kAifkAB1
86 82 85 pm2.61d1 φifkAB1
87 86 adantr φkifkAB1
88 87 1 fmptd φF:
89 elfzelz mMKAm
90 ffvelrn F:mFm
91 88 89 90 syl2an φmMKAFm
92 fveqeq2 k=mFk=1Fm=1
93 eldifi kMKAAkMKA
94 93 elfzelzd kMKAAk
95 eldifn kMKAA¬kA
96 95 83 syl kMKAAifkAB1=1
97 96 84 eqeltrdi kMKAAifkAB1
98 1 fvmpt2 kifkAB1Fk=ifkAB1
99 94 97 98 syl2anc kMKAAFk=ifkAB1
100 99 96 eqtrd kMKAAFk=1
101 92 100 vtoclga mMKAAFm=1
102 101 adantl φmMKAAFm=1
103 isof1o KIsom<,<1AAK:1A1-1 ontoA
104 f1of K:1A1-1 ontoAK:1AA
105 9 103 104 3syl φK:1AA
106 105 ffvelrnda φx1AKxA
107 106 iftrued φx1AifKxAKx/kB1=Kx/kB
108 58 adantr φx1AA
109 108 106 sseldd φx1AKx
110 nfv kφ
111 nfv kKxA
112 nfcsb1v _kKx/kB
113 nfcv _k1
114 111 112 113 nfif _kifKxAKx/kB1
115 114 nfel1 kifKxAKx/kB1
116 110 115 nfim kφifKxAKx/kB1
117 fvex KxV
118 eleq1 k=KxkAKxA
119 csbeq1a k=KxB=Kx/kB
120 118 119 ifbieq1d k=KxifkAB1=ifKxAKx/kB1
121 120 eleq1d k=KxifkAB1ifKxAKx/kB1
122 121 imbi2d k=KxφifkAB1φifKxAKx/kB1
123 116 117 122 86 vtoclf φifKxAKx/kB1
124 123 adantr φx1AifKxAKx/kB1
125 eleq1 n=KxnAKxA
126 csbeq1 n=Kxn/kB=Kx/kB
127 125 126 ifbieq1d n=KxifnAn/kB1=ifKxAKx/kB1
128 nfcv _nifkAB1
129 nfv knA
130 nfcsb1v _kn/kB
131 129 130 113 nfif _kifnAn/kB1
132 eleq1 k=nkAnA
133 csbeq1a k=nB=n/kB
134 132 133 ifbieq1d k=nifkAB1=ifnAn/kB1
135 128 131 134 cbvmpt kifkAB1=nifnAn/kB1
136 1 135 eqtri F=nifnAn/kB1
137 127 136 fvmptg KxifKxAKx/kB1FKx=ifKxAKx/kB1
138 109 124 137 syl2anc φx1AFKx=ifKxAKx/kB1
139 elfznn x1Ax
140 107 124 eqeltrrd φx1AKx/kB
141 fveq2 j=xKj=Kx
142 141 csbeq1d j=xKj/kB=Kx/kB
143 142 4 fvmptg xKx/kBHx=Kx/kB
144 139 140 143 syl2an2 φx1AHx=Kx/kB
145 107 138 144 3eqtr4rd φx1AHx=FKx
146 72 74 76 77 9 78 7 91 102 145 seqcoll φseqM×FKN=seq1×HN
147 5 5 jca φNN
148 1 2 3 4 147 8 30 prodmolem3 φseq1×GN=seq1×HN
149 146 148 eqtr4d φseqM×FKN=seq1×GN
150 70 149 breqtrd φseqM×Fseq1×GN