Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
|
2 |
|
prodmo.2 |
|
3 |
|
prodmo.3 |
|
4 |
|
prodmolem3.4 |
|
5 |
|
prodmolem3.5 |
|
6 |
|
prodmolem3.6 |
|
7 |
|
prodmolem3.7 |
|
8 |
|
mulcl |
|
9 |
8
|
adantl |
|
10 |
|
mulcom |
|
11 |
10
|
adantl |
|
12 |
|
mulass |
|
13 |
12
|
adantl |
|
14 |
5
|
simpld |
|
15 |
|
nnuz |
|
16 |
14 15
|
eleqtrdi |
|
17 |
|
ssidd |
|
18 |
|
f1ocnv |
|
19 |
6 18
|
syl |
|
20 |
|
f1oco |
|
21 |
19 7 20
|
syl2anc |
|
22 |
|
ovex |
|
23 |
22
|
f1oen |
|
24 |
21 23
|
syl |
|
25 |
|
fzfi |
|
26 |
|
fzfi |
|
27 |
|
hashen |
|
28 |
25 26 27
|
mp2an |
|
29 |
24 28
|
sylibr |
|
30 |
5
|
simprd |
|
31 |
30
|
nnnn0d |
|
32 |
|
hashfz1 |
|
33 |
31 32
|
syl |
|
34 |
14
|
nnnn0d |
|
35 |
|
hashfz1 |
|
36 |
34 35
|
syl |
|
37 |
29 33 36
|
3eqtr3rd |
|
38 |
37
|
oveq2d |
|
39 |
38
|
f1oeq2d |
|
40 |
21 39
|
mpbird |
|
41 |
|
fveq2 |
|
42 |
41
|
csbeq1d |
|
43 |
|
elfznn |
|
44 |
43
|
adantl |
|
45 |
|
f1of |
|
46 |
6 45
|
syl |
|
47 |
46
|
ffvelrnda |
|
48 |
2
|
ralrimiva |
|
49 |
48
|
adantr |
|
50 |
|
nfcsb1v |
|
51 |
50
|
nfel1 |
|
52 |
|
csbeq1a |
|
53 |
52
|
eleq1d |
|
54 |
51 53
|
rspc |
|
55 |
47 49 54
|
sylc |
|
56 |
3 42 44 55
|
fvmptd3 |
|
57 |
56 55
|
eqeltrd |
|
58 |
38
|
f1oeq2d |
|
59 |
7 58
|
mpbird |
|
60 |
|
f1of |
|
61 |
59 60
|
syl |
|
62 |
|
fvco3 |
|
63 |
61 62
|
sylan |
|
64 |
63
|
fveq2d |
|
65 |
6
|
adantr |
|
66 |
61
|
ffvelrnda |
|
67 |
|
f1ocnvfv2 |
|
68 |
65 66 67
|
syl2anc |
|
69 |
64 68
|
eqtrd |
|
70 |
69
|
csbeq1d |
|
71 |
70
|
fveq2d |
|
72 |
|
f1of |
|
73 |
40 72
|
syl |
|
74 |
73
|
ffvelrnda |
|
75 |
|
elfznn |
|
76 |
|
fveq2 |
|
77 |
76
|
csbeq1d |
|
78 |
77 3
|
fvmpti |
|
79 |
74 75 78
|
3syl |
|
80 |
|
elfznn |
|
81 |
80
|
adantl |
|
82 |
|
fveq2 |
|
83 |
82
|
csbeq1d |
|
84 |
83 4
|
fvmpti |
|
85 |
81 84
|
syl |
|
86 |
71 79 85
|
3eqtr4rd |
|
87 |
9 11 13 16 17 40 57 86
|
seqf1o |
|
88 |
37
|
fveq2d |
|
89 |
87 88
|
eqtr3d |
|