Metamath Proof Explorer


Theorem prodpr

Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses prodpr.1 k = A D = E
prodpr.2 k = B D = F
prodpr.a φ A V
prodpr.b φ B W
prodpr.e φ E
prodpr.f φ F
prodpr.3 φ A B
Assertion prodpr φ k A B D = E F

Proof

Step Hyp Ref Expression
1 prodpr.1 k = A D = E
2 prodpr.2 k = B D = F
3 prodpr.a φ A V
4 prodpr.b φ B W
5 prodpr.e φ E
6 prodpr.f φ F
7 prodpr.3 φ A B
8 disjsn2 A B A B =
9 7 8 syl φ A B =
10 df-pr A B = A B
11 10 a1i φ A B = A B
12 prfi A B Fin
13 12 a1i φ A B Fin
14 vex k V
15 14 elpr k A B k = A k = B
16 1 adantl φ k = A D = E
17 5 adantr φ k = A E
18 16 17 eqeltrd φ k = A D
19 2 adantl φ k = B D = F
20 6 adantr φ k = B F
21 19 20 eqeltrd φ k = B D
22 18 21 jaodan φ k = A k = B D
23 15 22 sylan2b φ k A B D
24 9 11 13 23 fprodsplit φ k A B D = k A D k B D
25 1 prodsn A V E k A D = E
26 3 5 25 syl2anc φ k A D = E
27 2 prodsn B W F k B D = F
28 4 6 27 syl2anc φ k B D = F
29 26 28 oveq12d φ k A D k B D = E F
30 24 29 eqtrd φ k A B D = E F