Metamath Proof Explorer


Theorem prodrb

Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F = k if k A B 1
prodmo.2 φ k A B
prodrb.4 φ M
prodrb.5 φ N
prodrb.6 φ A M
prodrb.7 φ A N
Assertion prodrb φ seq M × F C seq N × F C

Proof

Step Hyp Ref Expression
1 prodmo.1 F = k if k A B 1
2 prodmo.2 φ k A B
3 prodrb.4 φ M
4 prodrb.5 φ N
5 prodrb.6 φ A M
6 prodrb.7 φ A N
7 1 2 3 4 5 6 prodrblem2 φ N M seq M × F C seq N × F C
8 1 2 4 3 6 5 prodrblem2 φ M N seq N × F C seq M × F C
9 8 bicomd φ M N seq M × F C seq N × F C
10 uztric M N N M M N
11 3 4 10 syl2anc φ N M M N
12 7 9 11 mpjaodan φ seq M × F C seq N × F C