Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Complex products
prodrb
Next ⟩
prodmolem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodrb
Description:
Rebase the starting point of a product.
(Contributed by
Scott Fenton
, 4-Dec-2017)
Ref
Expression
Hypotheses
prodmo.1
⊢
F
=
k
∈
ℤ
⟼
if
k
∈
A
B
1
prodmo.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
prodrb.4
⊢
φ
→
M
∈
ℤ
prodrb.5
⊢
φ
→
N
∈
ℤ
prodrb.6
⊢
φ
→
A
⊆
ℤ
≥
M
prodrb.7
⊢
φ
→
A
⊆
ℤ
≥
N
Assertion
prodrb
⊢
φ
→
seq
M
×
F
⇝
C
↔
seq
N
×
F
⇝
C
Proof
Step
Hyp
Ref
Expression
1
prodmo.1
⊢
F
=
k
∈
ℤ
⟼
if
k
∈
A
B
1
2
prodmo.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
3
prodrb.4
⊢
φ
→
M
∈
ℤ
4
prodrb.5
⊢
φ
→
N
∈
ℤ
5
prodrb.6
⊢
φ
→
A
⊆
ℤ
≥
M
6
prodrb.7
⊢
φ
→
A
⊆
ℤ
≥
N
7
1
2
3
4
5
6
prodrblem2
⊢
φ
∧
N
∈
ℤ
≥
M
→
seq
M
×
F
⇝
C
↔
seq
N
×
F
⇝
C
8
1
2
4
3
6
5
prodrblem2
⊢
φ
∧
M
∈
ℤ
≥
N
→
seq
N
×
F
⇝
C
↔
seq
M
×
F
⇝
C
9
8
bicomd
⊢
φ
∧
M
∈
ℤ
≥
N
→
seq
M
×
F
⇝
C
↔
seq
N
×
F
⇝
C
10
uztric
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
N
∈
ℤ
≥
M
∨
M
∈
ℤ
≥
N
11
3
4
10
syl2anc
⊢
φ
→
N
∈
ℤ
≥
M
∨
M
∈
ℤ
≥
N
12
7
9
11
mpjaodan
⊢
φ
→
seq
M
×
F
⇝
C
↔
seq
N
×
F
⇝
C