Metamath Proof Explorer


Theorem prodrblem

Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F = k if k A B 1
prodmo.2 φ k A B
prodrb.3 φ N M
Assertion prodrblem φ A N seq M × F N = seq N × F

Proof

Step Hyp Ref Expression
1 prodmo.1 F = k if k A B 1
2 prodmo.2 φ k A B
3 prodrb.3 φ N M
4 mulid2 n 1 n = n
5 4 adantl φ A N n 1 n = n
6 1cnd φ A N 1
7 3 adantr φ A N N M
8 iftrue k A if k A B 1 = B
9 8 adantl φ k k A if k A B 1 = B
10 2 adantlr φ k k A B
11 9 10 eqeltrd φ k k A if k A B 1
12 11 ex φ k k A if k A B 1
13 iffalse ¬ k A if k A B 1 = 1
14 ax-1cn 1
15 13 14 eqeltrdi ¬ k A if k A B 1
16 12 15 pm2.61d1 φ k if k A B 1
17 16 1 fmptd φ F :
18 uzssz M
19 18 3 sselid φ N
20 17 19 ffvelrnd φ F N
21 20 adantr φ A N F N
22 elfzelz n M N 1 n
23 22 adantl φ A N n M N 1 n
24 simplr φ A N n M N 1 A N
25 19 zcnd φ N
26 25 adantr φ A N N
27 26 adantr φ A N n M N 1 N
28 1cnd φ A N n M N 1 1
29 27 28 npcand φ A N n M N 1 N - 1 + 1 = N
30 29 fveq2d φ A N n M N 1 N - 1 + 1 = N
31 24 30 sseqtrrd φ A N n M N 1 A N - 1 + 1
32 fznuz n M N 1 ¬ n N - 1 + 1
33 32 adantl φ A N n M N 1 ¬ n N - 1 + 1
34 31 33 ssneldd φ A N n M N 1 ¬ n A
35 23 34 eldifd φ A N n M N 1 n A
36 fveqeq2 k = n F k = 1 F n = 1
37 eldifi k A k
38 eldifn k A ¬ k A
39 38 13 syl k A if k A B 1 = 1
40 39 14 eqeltrdi k A if k A B 1
41 1 fvmpt2 k if k A B 1 F k = if k A B 1
42 37 40 41 syl2anc k A F k = if k A B 1
43 42 39 eqtrd k A F k = 1
44 36 43 vtoclga n A F n = 1
45 35 44 syl φ A N n M N 1 F n = 1
46 5 6 7 21 45 seqid φ A N seq M × F N = seq N × F