Metamath Proof Explorer


Theorem prodrblem2

Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F = k if k A B 1
prodmo.2 φ k A B
prodrb.4 φ M
prodrb.5 φ N
prodrb.6 φ A M
prodrb.7 φ A N
Assertion prodrblem2 φ N M seq M × F C seq N × F C

Proof

Step Hyp Ref Expression
1 prodmo.1 F = k if k A B 1
2 prodmo.2 φ k A B
3 prodrb.4 φ M
4 prodrb.5 φ N
5 prodrb.6 φ A M
6 prodrb.7 φ A N
7 4 adantr φ N M N
8 seqex seq M × F V
9 climres N seq M × F V seq M × F N C seq M × F C
10 7 8 9 sylancl φ N M seq M × F N C seq M × F C
11 2 adantlr φ N M k A B
12 simpr φ N M N M
13 1 11 12 prodrblem φ N M A N seq M × F N = seq N × F
14 6 13 mpidan φ N M seq M × F N = seq N × F
15 14 breq1d φ N M seq M × F N C seq N × F C
16 10 15 bitr3d φ N M seq M × F C seq N × F C