Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Complex products
prodrblem2
Next ⟩
prodrb
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodrblem2
Description:
Lemma for
prodrb
.
(Contributed by
Scott Fenton
, 4-Dec-2017)
Ref
Expression
Hypotheses
prodmo.1
⊢
F
=
k
∈
ℤ
⟼
if
k
∈
A
B
1
prodmo.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
prodrb.4
⊢
φ
→
M
∈
ℤ
prodrb.5
⊢
φ
→
N
∈
ℤ
prodrb.6
⊢
φ
→
A
⊆
ℤ
≥
M
prodrb.7
⊢
φ
→
A
⊆
ℤ
≥
N
Assertion
prodrblem2
⊢
φ
∧
N
∈
ℤ
≥
M
→
seq
M
×
F
⇝
C
↔
seq
N
×
F
⇝
C
Proof
Step
Hyp
Ref
Expression
1
prodmo.1
⊢
F
=
k
∈
ℤ
⟼
if
k
∈
A
B
1
2
prodmo.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
3
prodrb.4
⊢
φ
→
M
∈
ℤ
4
prodrb.5
⊢
φ
→
N
∈
ℤ
5
prodrb.6
⊢
φ
→
A
⊆
ℤ
≥
M
6
prodrb.7
⊢
φ
→
A
⊆
ℤ
≥
N
7
4
adantr
⊢
φ
∧
N
∈
ℤ
≥
M
→
N
∈
ℤ
8
seqex
⊢
seq
M
×
F
∈
V
9
climres
⊢
N
∈
ℤ
∧
seq
M
×
F
∈
V
→
seq
M
×
F
↾
ℤ
≥
N
⇝
C
↔
seq
M
×
F
⇝
C
10
7
8
9
sylancl
⊢
φ
∧
N
∈
ℤ
≥
M
→
seq
M
×
F
↾
ℤ
≥
N
⇝
C
↔
seq
M
×
F
⇝
C
11
2
adantlr
⊢
φ
∧
N
∈
ℤ
≥
M
∧
k
∈
A
→
B
∈
ℂ
12
simpr
⊢
φ
∧
N
∈
ℤ
≥
M
→
N
∈
ℤ
≥
M
13
1
11
12
prodrblem
⊢
φ
∧
N
∈
ℤ
≥
M
∧
A
⊆
ℤ
≥
N
→
seq
M
×
F
↾
ℤ
≥
N
=
seq
N
×
F
14
6
13
mpidan
⊢
φ
∧
N
∈
ℤ
≥
M
→
seq
M
×
F
↾
ℤ
≥
N
=
seq
N
×
F
15
14
breq1d
⊢
φ
∧
N
∈
ℤ
≥
M
→
seq
M
×
F
↾
ℤ
≥
N
⇝
C
↔
seq
N
×
F
⇝
C
16
10
15
bitr3d
⊢
φ
∧
N
∈
ℤ
≥
M
→
seq
M
×
F
⇝
C
↔
seq
N
×
F
⇝
C