Metamath Proof Explorer


Theorem prodsn

Description: A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypothesis prodsn.1 k = M A = B
Assertion prodsn M V B k M A = B

Proof

Step Hyp Ref Expression
1 prodsn.1 k = M A = B
2 nfcv _ m A
3 nfcsb1v _ k m / k A
4 csbeq1a k = m A = m / k A
5 2 3 4 cbvprodi k M A = m M m / k A
6 csbeq1 m = 1 M n m / k A = 1 M n / k A
7 1nn 1
8 7 a1i M V B 1
9 1z 1
10 f1osng 1 M V 1 M : 1 1-1 onto M
11 fzsn 1 1 1 = 1
12 9 11 ax-mp 1 1 = 1
13 f1oeq2 1 1 = 1 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
14 12 13 ax-mp 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
15 10 14 sylibr 1 M V 1 M : 1 1 1-1 onto M
16 9 15 mpan M V 1 M : 1 1 1-1 onto M
17 16 adantr M V B 1 M : 1 1 1-1 onto M
18 velsn m M m = M
19 csbeq1 m = M m / k A = M / k A
20 nfcvd M V _ k B
21 20 1 csbiegf M V M / k A = B
22 21 adantr M V B M / k A = B
23 19 22 sylan9eqr M V B m = M m / k A = B
24 18 23 sylan2b M V B m M m / k A = B
25 simplr M V B m M B
26 24 25 eqeltrd M V B m M m / k A
27 12 eleq2i n 1 1 n 1
28 velsn n 1 n = 1
29 27 28 bitri n 1 1 n = 1
30 fvsng 1 M V 1 M 1 = M
31 9 30 mpan M V 1 M 1 = M
32 31 adantr M V B 1 M 1 = M
33 32 csbeq1d M V B 1 M 1 / k A = M / k A
34 simpr M V B B
35 fvsng 1 B 1 B 1 = B
36 9 34 35 sylancr M V B 1 B 1 = B
37 22 33 36 3eqtr4rd M V B 1 B 1 = 1 M 1 / k A
38 fveq2 n = 1 1 B n = 1 B 1
39 fveq2 n = 1 1 M n = 1 M 1
40 39 csbeq1d n = 1 1 M n / k A = 1 M 1 / k A
41 38 40 eqeq12d n = 1 1 B n = 1 M n / k A 1 B 1 = 1 M 1 / k A
42 37 41 syl5ibrcom M V B n = 1 1 B n = 1 M n / k A
43 42 imp M V B n = 1 1 B n = 1 M n / k A
44 29 43 sylan2b M V B n 1 1 1 B n = 1 M n / k A
45 6 8 17 26 44 fprod M V B m M m / k A = seq 1 × 1 B 1
46 5 45 eqtrid M V B k M A = seq 1 × 1 B 1
47 9 36 seq1i M V B seq 1 × 1 B 1 = B
48 46 47 eqtrd M V B k M A = B