Metamath Proof Explorer


Theorem prodsnf

Description: A product of a singleton is the term. A version of prodsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses prodsnf.1 _ k B
prodsnf.2 k = M A = B
Assertion prodsnf M V B k M A = B

Proof

Step Hyp Ref Expression
1 prodsnf.1 _ k B
2 prodsnf.2 k = M A = B
3 nfcv _ m A
4 nfcsb1v _ k m / k A
5 csbeq1a k = m A = m / k A
6 3 4 5 cbvprodi k M A = m M m / k A
7 csbeq1 m = 1 M n m / k A = 1 M n / k A
8 1nn 1
9 8 a1i M V B 1
10 1z 1
11 f1osng 1 M V 1 M : 1 1-1 onto M
12 fzsn 1 1 1 = 1
13 10 12 ax-mp 1 1 = 1
14 f1oeq2 1 1 = 1 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
15 13 14 ax-mp 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
16 11 15 sylibr 1 M V 1 M : 1 1 1-1 onto M
17 10 16 mpan M V 1 M : 1 1 1-1 onto M
18 17 adantr M V B 1 M : 1 1 1-1 onto M
19 velsn m M m = M
20 csbeq1 m = M m / k A = M / k A
21 1 a1i M V _ k B
22 21 2 csbiegf M V M / k A = B
23 22 adantr M V B M / k A = B
24 20 23 sylan9eqr M V B m = M m / k A = B
25 19 24 sylan2b M V B m M m / k A = B
26 simplr M V B m M B
27 25 26 eqeltrd M V B m M m / k A
28 13 eleq2i n 1 1 n 1
29 velsn n 1 n = 1
30 28 29 bitri n 1 1 n = 1
31 fvsng 1 M V 1 M 1 = M
32 10 31 mpan M V 1 M 1 = M
33 32 adantr M V B 1 M 1 = M
34 33 csbeq1d M V B 1 M 1 / k A = M / k A
35 simpr M V B B
36 fvsng 1 B 1 B 1 = B
37 10 35 36 sylancr M V B 1 B 1 = B
38 23 34 37 3eqtr4rd M V B 1 B 1 = 1 M 1 / k A
39 fveq2 n = 1 1 B n = 1 B 1
40 fveq2 n = 1 1 M n = 1 M 1
41 40 csbeq1d n = 1 1 M n / k A = 1 M 1 / k A
42 39 41 eqeq12d n = 1 1 B n = 1 M n / k A 1 B 1 = 1 M 1 / k A
43 38 42 syl5ibrcom M V B n = 1 1 B n = 1 M n / k A
44 43 imp M V B n = 1 1 B n = 1 M n / k A
45 30 44 sylan2b M V B n 1 1 1 B n = 1 M n / k A
46 7 9 18 27 45 fprod M V B m M m / k A = seq 1 × 1 B 1
47 6 46 eqtrid M V B k M A = seq 1 × 1 B 1
48 10 37 seq1i M V B seq 1 × 1 B 1 = B
49 47 48 eqtrd M V B k M A = B