Metamath Proof Explorer


Theorem prodsns

Description: A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017)

Ref Expression
Assertion prodsns M V M / k A k M A = M / k A

Proof

Step Hyp Ref Expression
1 nfcv _ n A
2 nfcsb1v _ k n / k A
3 csbeq1a k = n A = n / k A
4 1 2 3 cbvprodi k M A = n M n / k A
5 csbeq1 n = M n / k A = M / k A
6 5 prodsn M V M / k A n M n / k A = M / k A
7 4 6 eqtrid M V M / k A k M A = M / k A