Metamath Proof Explorer


Theorem prodss

Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017)

Ref Expression
Hypotheses prodss.1 φ A B
prodss.2 φ k A C
prodss.3 φ n M y y 0 seq n × k M if k B C 1 y
prodss.4 φ k B A C = 1
prodss.5 φ B M
Assertion prodss φ k A C = k B C

Proof

Step Hyp Ref Expression
1 prodss.1 φ A B
2 prodss.2 φ k A C
3 prodss.3 φ n M y y 0 seq n × k M if k B C 1 y
4 prodss.4 φ k B A C = 1
5 prodss.5 φ B M
6 eqid M = M
7 simpr φ M M
8 3 adantr φ M n M y y 0 seq n × k M if k B C 1 y
9 1 5 sstrd φ A M
10 9 adantr φ M A M
11 simpr φ M m M m M
12 iftrue m B if m B m / k C 1 = m / k C
13 12 adantl φ m B if m B m / k C 1 = m / k C
14 2 ex φ k A C
15 14 adantr φ k B k A C
16 eldif k B A k B ¬ k A
17 ax-1cn 1
18 4 17 eqeltrdi φ k B A C
19 16 18 sylan2br φ k B ¬ k A C
20 19 expr φ k B ¬ k A C
21 15 20 pm2.61d φ k B C
22 21 ralrimiva φ k B C
23 nfcsb1v _ k m / k C
24 23 nfel1 k m / k C
25 csbeq1a k = m C = m / k C
26 25 eleq1d k = m C m / k C
27 24 26 rspc m B k B C m / k C
28 22 27 mpan9 φ m B m / k C
29 13 28 eqeltrd φ m B if m B m / k C 1
30 iffalse ¬ m B if m B m / k C 1 = 1
31 30 17 eqeltrdi ¬ m B if m B m / k C 1
32 31 adantl φ ¬ m B if m B m / k C 1
33 29 32 pm2.61dan φ if m B m / k C 1
34 33 adantr φ M if m B m / k C 1
35 34 adantr φ M m M if m B m / k C 1
36 nfcv _ k m
37 nfv k m B
38 nfcv _ k 1
39 37 23 38 nfif _ k if m B m / k C 1
40 eleq1w k = m k B m B
41 40 25 ifbieq1d k = m if k B C 1 = if m B m / k C 1
42 eqid k M if k B C 1 = k M if k B C 1
43 36 39 41 42 fvmptf m M if m B m / k C 1 k M if k B C 1 m = if m B m / k C 1
44 11 35 43 syl2anc φ M m M k M if k B C 1 m = if m B m / k C 1
45 iftrue m A if m A k A C m 1 = k A C m
46 45 adantl φ M m A if m A k A C m 1 = k A C m
47 simpr φ M m A m A
48 1 adantr φ M A B
49 48 sselda φ M m A m B
50 28 adantlr φ M m B m / k C
51 49 50 syldan φ M m A m / k C
52 eqid k A C = k A C
53 52 fvmpts m A m / k C k A C m = m / k C
54 47 51 53 syl2anc φ M m A k A C m = m / k C
55 46 54 eqtrd φ M m A if m A k A C m 1 = m / k C
56 55 ex φ M m A if m A k A C m 1 = m / k C
57 56 adantr φ M m B m A if m A k A C m 1 = m / k C
58 iffalse ¬ m A if m A k A C m 1 = 1
59 58 adantl m B ¬ m A if m A k A C m 1 = 1
60 59 adantl φ M m B ¬ m A if m A k A C m 1 = 1
61 eldif m B A m B ¬ m A
62 4 ralrimiva φ k B A C = 1
63 62 adantr φ M k B A C = 1
64 23 nfeq1 k m / k C = 1
65 25 eqeq1d k = m C = 1 m / k C = 1
66 64 65 rspc m B A k B A C = 1 m / k C = 1
67 63 66 mpan9 φ M m B A m / k C = 1
68 61 67 sylan2br φ M m B ¬ m A m / k C = 1
69 60 68 eqtr4d φ M m B ¬ m A if m A k A C m 1 = m / k C
70 69 expr φ M m B ¬ m A if m A k A C m 1 = m / k C
71 57 70 pm2.61d φ M m B if m A k A C m 1 = m / k C
72 12 adantl φ M m B if m B m / k C 1 = m / k C
73 71 72 eqtr4d φ M m B if m A k A C m 1 = if m B m / k C 1
74 48 ssneld φ M ¬ m B ¬ m A
75 74 imp φ M ¬ m B ¬ m A
76 75 58 syl φ M ¬ m B if m A k A C m 1 = 1
77 30 adantl φ M ¬ m B if m B m / k C 1 = 1
78 76 77 eqtr4d φ M ¬ m B if m A k A C m 1 = if m B m / k C 1
79 73 78 pm2.61dan φ M if m A k A C m 1 = if m B m / k C 1
80 79 adantr φ M m M if m A k A C m 1 = if m B m / k C 1
81 44 80 eqtr4d φ M m M k M if k B C 1 m = if m A k A C m 1
82 2 fmpttd φ k A C : A
83 82 adantr φ M k A C : A
84 83 ffvelrnda φ M m A k A C m
85 6 7 8 10 81 84 zprod φ M m A k A C m = seq M × k M if k B C 1
86 5 adantr φ M B M
87 43 ancoms if m B m / k C 1 m M k M if k B C 1 m = if m B m / k C 1
88 34 87 sylan φ M m M k M if k B C 1 m = if m B m / k C 1
89 simpr φ M m B m B
90 eqid k B C = k B C
91 90 fvmpts m B m / k C k B C m = m / k C
92 89 50 91 syl2anc φ M m B k B C m = m / k C
93 92 ifeq1d φ M m B if m B k B C m 1 = if m B m / k C 1
94 93 adantlr φ M m M m B if m B k B C m 1 = if m B m / k C 1
95 iffalse ¬ m B if m B k B C m 1 = 1
96 95 30 eqtr4d ¬ m B if m B k B C m 1 = if m B m / k C 1
97 96 adantl φ M m M ¬ m B if m B k B C m 1 = if m B m / k C 1
98 94 97 pm2.61dan φ M m M if m B k B C m 1 = if m B m / k C 1
99 88 98 eqtr4d φ M m M k M if k B C 1 m = if m B k B C m 1
100 21 fmpttd φ k B C : B
101 100 adantr φ M k B C : B
102 101 ffvelrnda φ M m B k B C m
103 6 7 8 86 99 102 zprod φ M m B k B C m = seq M × k M if k B C 1
104 85 103 eqtr4d φ M m A k A C m = m B k B C m
105 prodfc m A k A C m = k A C
106 prodfc m B k B C m = k B C
107 104 105 106 3eqtr3g φ M k A C = k B C
108 1 adantr φ ¬ M A B
109 5 adantr φ ¬ M B M
110 uzf : 𝒫
111 110 fdmi dom =
112 111 eleq2i M dom M
113 ndmfv ¬ M dom M =
114 112 113 sylnbir ¬ M M =
115 114 adantl φ ¬ M M =
116 109 115 sseqtrd φ ¬ M B
117 108 116 sstrd φ ¬ M A
118 ss0 A A =
119 117 118 syl φ ¬ M A =
120 ss0 B B =
121 116 120 syl φ ¬ M B =
122 119 121 eqtr4d φ ¬ M A = B
123 122 prodeq1d φ ¬ M k A C = k B C
124 107 123 pm2.61dan φ k A C = k B C