Metamath Proof Explorer


Theorem prodtp

Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses prodpr.1 k = A D = E
prodpr.2 k = B D = F
prodpr.a φ A V
prodpr.b φ B W
prodpr.e φ E
prodpr.f φ F
prodpr.3 φ A B
prodtp.1 k = C D = G
prodtp.c φ C X
prodtp.g φ G
prodtp.2 φ A C
prodtp.3 φ B C
Assertion prodtp φ k A B C D = E F G

Proof

Step Hyp Ref Expression
1 prodpr.1 k = A D = E
2 prodpr.2 k = B D = F
3 prodpr.a φ A V
4 prodpr.b φ B W
5 prodpr.e φ E
6 prodpr.f φ F
7 prodpr.3 φ A B
8 prodtp.1 k = C D = G
9 prodtp.c φ C X
10 prodtp.g φ G
11 prodtp.2 φ A C
12 prodtp.3 φ B C
13 disjprsn A C B C A B C =
14 11 12 13 syl2anc φ A B C =
15 df-tp A B C = A B C
16 15 a1i φ A B C = A B C
17 tpfi A B C Fin
18 17 a1i φ A B C Fin
19 vex k V
20 19 eltp k A B C k = A k = B k = C
21 1 adantl φ k = A D = E
22 5 adantr φ k = A E
23 21 22 eqeltrd φ k = A D
24 23 adantlr φ k = A k = B k = C k = A D
25 2 adantl φ k = B D = F
26 6 adantr φ k = B F
27 25 26 eqeltrd φ k = B D
28 27 adantlr φ k = A k = B k = C k = B D
29 8 adantl φ k = C D = G
30 10 adantr φ k = C G
31 29 30 eqeltrd φ k = C D
32 31 adantlr φ k = A k = B k = C k = C D
33 simpr φ k = A k = B k = C k = A k = B k = C
34 24 28 32 33 mpjao3dan φ k = A k = B k = C D
35 20 34 sylan2b φ k A B C D
36 14 16 18 35 fprodsplit φ k A B C D = k A B D k C D
37 1 2 3 4 5 6 7 prodpr φ k A B D = E F
38 8 prodsn C X G k C D = G
39 9 10 38 syl2anc φ k C D = G
40 37 39 oveq12d φ k A B D k C D = E F G
41 36 40 eqtrd φ k A B C D = E F G