Step |
Hyp |
Ref |
Expression |
1 |
|
prodpr.1 |
|
2 |
|
prodpr.2 |
|
3 |
|
prodpr.a |
|
4 |
|
prodpr.b |
|
5 |
|
prodpr.e |
|
6 |
|
prodpr.f |
|
7 |
|
prodpr.3 |
|
8 |
|
prodtp.1 |
|
9 |
|
prodtp.c |
|
10 |
|
prodtp.g |
|
11 |
|
prodtp.2 |
|
12 |
|
prodtp.3 |
|
13 |
|
disjprsn |
|
14 |
11 12 13
|
syl2anc |
|
15 |
|
df-tp |
|
16 |
15
|
a1i |
|
17 |
|
tpfi |
|
18 |
17
|
a1i |
|
19 |
|
vex |
|
20 |
19
|
eltp |
|
21 |
1
|
adantl |
|
22 |
5
|
adantr |
|
23 |
21 22
|
eqeltrd |
|
24 |
23
|
adantlr |
|
25 |
2
|
adantl |
|
26 |
6
|
adantr |
|
27 |
25 26
|
eqeltrd |
|
28 |
27
|
adantlr |
|
29 |
8
|
adantl |
|
30 |
10
|
adantr |
|
31 |
29 30
|
eqeltrd |
|
32 |
31
|
adantlr |
|
33 |
|
simpr |
|
34 |
24 28 32 33
|
mpjao3dan |
|
35 |
20 34
|
sylan2b |
|
36 |
14 16 18 35
|
fprodsplit |
|
37 |
1 2 3 4 5 6 7
|
prodpr |
|
38 |
8
|
prodsn |
|
39 |
9 10 38
|
syl2anc |
|
40 |
37 39
|
oveq12d |
|
41 |
36 40
|
eqtrd |
|