| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodpr.1 |  | 
						
							| 2 |  | prodpr.2 |  | 
						
							| 3 |  | prodpr.a |  | 
						
							| 4 |  | prodpr.b |  | 
						
							| 5 |  | prodpr.e |  | 
						
							| 6 |  | prodpr.f |  | 
						
							| 7 |  | prodpr.3 |  | 
						
							| 8 |  | prodtp.1 |  | 
						
							| 9 |  | prodtp.c |  | 
						
							| 10 |  | prodtp.g |  | 
						
							| 11 |  | prodtp.2 |  | 
						
							| 12 |  | prodtp.3 |  | 
						
							| 13 |  | disjprsn |  | 
						
							| 14 | 11 12 13 | syl2anc |  | 
						
							| 15 |  | df-tp |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 |  | tpfi |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 |  | vex |  | 
						
							| 20 | 19 | eltp |  | 
						
							| 21 | 1 | adantl |  | 
						
							| 22 | 5 | adantr |  | 
						
							| 23 | 21 22 | eqeltrd |  | 
						
							| 24 | 23 | adantlr |  | 
						
							| 25 | 2 | adantl |  | 
						
							| 26 | 6 | adantr |  | 
						
							| 27 | 25 26 | eqeltrd |  | 
						
							| 28 | 27 | adantlr |  | 
						
							| 29 | 8 | adantl |  | 
						
							| 30 | 10 | adantr |  | 
						
							| 31 | 29 30 | eqeltrd |  | 
						
							| 32 | 31 | adantlr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 24 28 32 33 | mpjao3dan |  | 
						
							| 35 | 20 34 | sylan2b |  | 
						
							| 36 | 14 16 18 35 | fprodsplit |  | 
						
							| 37 | 1 2 3 4 5 6 7 | prodpr |  | 
						
							| 38 | 8 | prodsn |  | 
						
							| 39 | 9 10 38 | syl2anc |  | 
						
							| 40 | 37 39 | oveq12d |  | 
						
							| 41 | 36 40 | eqtrd |  |