Metamath Proof Explorer


Theorem prprc

Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion prprc ¬ A V ¬ B V A B =

Proof

Step Hyp Ref Expression
1 prprc1 ¬ A V A B = B
2 snprc ¬ B V B =
3 2 biimpi ¬ B V B =
4 1 3 sylan9eq ¬ A V ¬ B V A B =