Metamath Proof Explorer


Theorem prprc1

Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion prprc1 ¬ A V A B = B

Proof

Step Hyp Ref Expression
1 snprc ¬ A V A =
2 uneq1 A = A B = B
3 df-pr A B = A B
4 uncom B = B
5 un0 B = B
6 4 5 eqtr2i B = B
7 2 3 6 3eqtr4g A = A B = B
8 1 7 sylbi ¬ A V A B = B