Metamath Proof Explorer
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993)
|
|
Ref |
Expression |
|
Assertion |
prprc1 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
snprc |
|
2 |
|
uneq1 |
|
3 |
|
df-pr |
|
4 |
|
uncom |
|
5 |
|
un0 |
|
6 |
4 5
|
eqtr2i |
|
7 |
2 3 6
|
3eqtr4g |
|
8 |
1 7
|
sylbi |
|