Metamath Proof Explorer


Theorem prprc2

Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion prprc2 ¬ B V A B = A

Proof

Step Hyp Ref Expression
1 prcom A B = B A
2 prprc1 ¬ B V B A = A
3 1 2 eqtrid ¬ B V A B = A