Metamath Proof Explorer


Theorem prprelb

Description: An element of the set of all proper unordered pairs over a given set V is a subset of V of size two. (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprelb V W P PrPairs V P 𝒫 V P = 2

Proof

Step Hyp Ref Expression
1 prprvalpw V W PrPairs V = p 𝒫 V | a V b V a b p = a b
2 1 eleq2d V W P PrPairs V P p 𝒫 V | a V b V a b p = a b
3 eqeq1 p = P p = a b P = a b
4 3 anbi2d p = P a b p = a b a b P = a b
5 4 2rexbidv p = P a V b V a b p = a b a V b V a b P = a b
6 5 elrab P p 𝒫 V | a V b V a b p = a b P 𝒫 V a V b V a b P = a b
7 2 6 bitrdi V W P PrPairs V P 𝒫 V a V b V a b P = a b
8 hash2exprb P 𝒫 V P = 2 a b a b P = a b
9 eleq1 P = a b P 𝒫 V a b 𝒫 V
10 prelpw a V b V a V b V a b 𝒫 V
11 10 el2v a V b V a b 𝒫 V
12 11 biimpri a b 𝒫 V a V b V
13 9 12 syl6bi P = a b P 𝒫 V a V b V
14 13 com12 P 𝒫 V P = a b a V b V
15 14 adantld P 𝒫 V a b P = a b a V b V
16 15 pm4.71rd P 𝒫 V a b P = a b a V b V a b P = a b
17 16 2exbidv P 𝒫 V a b a b P = a b a b a V b V a b P = a b
18 r2ex a V b V a b P = a b a b a V b V a b P = a b
19 17 18 bitr4di P 𝒫 V a b a b P = a b a V b V a b P = a b
20 8 19 bitr2d P 𝒫 V a V b V a b P = a b P = 2
21 20 pm5.32i P 𝒫 V a V b V a b P = a b P 𝒫 V P = 2
22 7 21 bitrdi V W P PrPairs V P 𝒫 V P = 2