Metamath Proof Explorer


Theorem prprrab

Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020)

Ref Expression
Assertion prprrab x 𝒫 A | x = 2 = x 𝒫 A | x = 2

Proof

Step Hyp Ref Expression
1 2ne0 2 0
2 1 neii ¬ 2 = 0
3 eqeq1 x = 2 x = 0 2 = 0
4 2 3 mtbiri x = 2 ¬ x = 0
5 hasheq0 x V x = 0 x =
6 5 bicomd x V x = x = 0
7 6 necon3abid x V x ¬ x = 0
8 7 elv x ¬ x = 0
9 4 8 sylibr x = 2 x
10 9 biantrud x = 2 x 𝒫 A x 𝒫 A x
11 eldifsn x 𝒫 A x 𝒫 A x
12 10 11 bitr4di x = 2 x 𝒫 A x 𝒫 A
13 12 pm5.32ri x 𝒫 A x = 2 x 𝒫 A x = 2
14 13 abbii x | x 𝒫 A x = 2 = x | x 𝒫 A x = 2
15 df-rab x 𝒫 A | x = 2 = x | x 𝒫 A x = 2
16 df-rab x 𝒫 A | x = 2 = x | x 𝒫 A x = 2
17 14 15 16 3eqtr4ri x 𝒫 A | x = 2 = x 𝒫 A | x = 2