Metamath Proof Explorer


Theorem prsref

Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b B = Base K
isprs.l ˙ = K
Assertion prsref K Proset X B X ˙ X

Proof

Step Hyp Ref Expression
1 isprs.b B = Base K
2 isprs.l ˙ = K
3 id X B X B
4 3 3 3 3jca X B X B X B X B
5 1 2 prslem K Proset X B X B X B X ˙ X X ˙ X X ˙ X X ˙ X
6 4 5 sylan2 K Proset X B X ˙ X X ˙ X X ˙ X X ˙ X
7 6 simpld K Proset X B X ˙ X