Metamath Proof Explorer


Theorem prsrlem1

Description: Decomposing signed reals into positive reals. Lemma for addsrpr and mulsrpr . (Contributed by Jim Kingdon, 30-Dec-2019)

Ref Expression
Assertion prsrlem1 A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w 𝑷 v 𝑷 s 𝑷 f 𝑷 u 𝑷 t 𝑷 g 𝑷 h 𝑷 w + 𝑷 f = v + 𝑷 s u + 𝑷 h = t + 𝑷 g

Proof

Step Hyp Ref Expression
1 enrer ~ 𝑹 Er 𝑷 × 𝑷
2 erdm ~ 𝑹 Er 𝑷 × 𝑷 dom ~ 𝑹 = 𝑷 × 𝑷
3 1 2 ax-mp dom ~ 𝑹 = 𝑷 × 𝑷
4 simprll A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 A = w v ~ 𝑹
5 simpll A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 A 𝑷 × 𝑷 / ~ 𝑹
6 4 5 eqeltrrd A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w v ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
7 ecelqsdm dom ~ 𝑹 = 𝑷 × 𝑷 w v ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 w v 𝑷 × 𝑷
8 3 6 7 sylancr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w v 𝑷 × 𝑷
9 opelxp w v 𝑷 × 𝑷 w 𝑷 v 𝑷
10 8 9 sylib A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w 𝑷 v 𝑷
11 simprrl A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 A = s f ~ 𝑹
12 11 5 eqeltrrd A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 s f ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
13 ecelqsdm dom ~ 𝑹 = 𝑷 × 𝑷 s f ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 s f 𝑷 × 𝑷
14 3 12 13 sylancr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 s f 𝑷 × 𝑷
15 opelxp s f 𝑷 × 𝑷 s 𝑷 f 𝑷
16 14 15 sylib A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 s 𝑷 f 𝑷
17 10 16 jca A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w 𝑷 v 𝑷 s 𝑷 f 𝑷
18 simprlr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 B = u t ~ 𝑹
19 simplr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹
20 18 19 eqeltrrd A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u t ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
21 ecelqsdm dom ~ 𝑹 = 𝑷 × 𝑷 u t ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 u t 𝑷 × 𝑷
22 3 20 21 sylancr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u t 𝑷 × 𝑷
23 opelxp u t 𝑷 × 𝑷 u 𝑷 t 𝑷
24 22 23 sylib A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u 𝑷 t 𝑷
25 simprrr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 B = g h ~ 𝑹
26 25 19 eqeltrrd A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 g h ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
27 ecelqsdm dom ~ 𝑹 = 𝑷 × 𝑷 g h ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 g h 𝑷 × 𝑷
28 3 26 27 sylancr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 g h 𝑷 × 𝑷
29 opelxp g h 𝑷 × 𝑷 g 𝑷 h 𝑷
30 28 29 sylib A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 g 𝑷 h 𝑷
31 24 30 jca A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u 𝑷 t 𝑷 g 𝑷 h 𝑷
32 4 11 eqtr3d A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w v ~ 𝑹 = s f ~ 𝑹
33 1 a1i A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 ~ 𝑹 Er 𝑷 × 𝑷
34 33 8 erth A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w v ~ 𝑹 s f w v ~ 𝑹 = s f ~ 𝑹
35 32 34 mpbird A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w v ~ 𝑹 s f
36 df-enr ~ 𝑹 = x y | x 𝑷 × 𝑷 y 𝑷 × 𝑷 a b c d x = a b y = c d a + 𝑷 d = b + 𝑷 c
37 36 ecopoveq w 𝑷 v 𝑷 s 𝑷 f 𝑷 w v ~ 𝑹 s f w + 𝑷 f = v + 𝑷 s
38 10 16 37 syl2anc A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w v ~ 𝑹 s f w + 𝑷 f = v + 𝑷 s
39 35 38 mpbid A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w + 𝑷 f = v + 𝑷 s
40 18 25 eqtr3d A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u t ~ 𝑹 = g h ~ 𝑹
41 33 22 erth A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u t ~ 𝑹 g h u t ~ 𝑹 = g h ~ 𝑹
42 40 41 mpbird A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u t ~ 𝑹 g h
43 36 ecopoveq u 𝑷 t 𝑷 g 𝑷 h 𝑷 u t ~ 𝑹 g h u + 𝑷 h = t + 𝑷 g
44 24 30 43 syl2anc A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u t ~ 𝑹 g h u + 𝑷 h = t + 𝑷 g
45 42 44 mpbid A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 u + 𝑷 h = t + 𝑷 g
46 39 45 jca A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w + 𝑷 f = v + 𝑷 s u + 𝑷 h = t + 𝑷 g
47 17 31 46 jca31 A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w 𝑷 v 𝑷 s 𝑷 f 𝑷 u 𝑷 t 𝑷 g 𝑷 h 𝑷 w + 𝑷 f = v + 𝑷 s u + 𝑷 h = t + 𝑷 g